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The gradient and Hessian are [322 + 2az + b] and [62 + 2a], respectively.
When z > —
When z < —

An optimal solution is z* = =#=5—= a2=3b  We let the Vf(z*) be 0. Notice that the result in
Part (c) should be satisfied.
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The function is convex if x5 > 0 and —422 > 0. As the result, the function is convex over the
region 1 = 0,9 > 0.

The function is nowhere convex.
The function is convex if x5 > 0, 2013 — x% > 0, and 6x2x3 — 49;2 — 3x1x3 3>0

If n = 2 and 3, the Hessian matrix are

, T2 0 , B 2 00
Vef(z) = 0 2 and Vof(z)=10 2 0
0 0 2

Follow the same rule, we know that no matter which number n is, V2 f(x) is always positive
semi-definite. Then, the function is convex everywhere.

Let the decision variables be
q; = the sales quantity of product i, i = 1,2, 3,

The seller’s profit maximization problem is

max f(q) = Z(a —bgi — ¢)q;

3
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>0 Vi=1,2,3.

The Hessian matrix is

26 0 0
Vif(g)=| 0 —2b 0
0o 0 -2

Since V2f(q) is always less than 0. It is a concave function. And the constraint is a linear
function. As the result, it is a convex program.



(b)

The Lagrangian is L(g|\) = Z?Zl(a —2bg; — ¢)q; + MK — Zle qi)
QLN — g —2bg; —c— X Vi=1,23

The KKT condition for the problem is as follow (A > 0):
i. Primal feasibility: 2?21 ¢ < K.

ii. Dual feasibility: a —2bq; —c— A =0 Vi=1,2,3.
iii. Complementary slackness: (K — Z‘:Zl qi) = 0.

By part(b), ¢; = =52 Vi =1,2,3. Because the constraint may be binding or nonbinding,

there are two situation:

i. If the constraint is binding, then ¢; +¢2+qg3 = K. Astheresult g1 = g2 = q3 = “*ch*A = %
ii. If the constraint is binding, then ¢; = 5. Notice that the Lagrange multiplier A is 0.
. _ i ra—c K.
Combine the above result, ¢* = min{ “5*, 5-}:
2
i. f(q*) =aK — Y5~ — cK when the constraint is binding.
2
ii. f(q*) = % when the constraint is nonbinding.

a—c

The optimal quantity ¢f = min{%;%, &}. Therefore it (weakly) increases in a, decreases in
b, and decreases in ¢ when the constraint is nonbinding. If the constraint is binding, the
increasing of K will make ¢; larger. The intuitive explanations are as below:

i. For a, the reason is that the price is a — bg;, thus increasing of ¢ makes the product more
profitable. The seller will want to sell more products.

ii. For b, the reason is just the contrary of (i).

iii. For ¢, the reason is that it is unit production cost. The increasing of ¢ means that
producing the product becomes more expensive.

iv. For K, we know that p; — ¢ must be greater than 0, otherwise the seller will not sell
the product. The increasing of K means that the total demand becomes larger. As the
shadow price of demand constraint is positive, selling products must be more profitable.

The gradient and Hessian are
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First, we set 2° = (2,2) and the next solution be x!.

We have
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Therefore, we can obtain next solution by Newton’s method:
(2] [+ 2] 1
T2 0 47 1o

The first step is the same as (b).
2
VF(x0) = { Z } .

We have
Therefore, we can obtain next solution by the gradient descent method:
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ap = argmin, >, f(z° — aVf(2?)),
where f(2° — aVf(2°) = f(2 — ae®,2 — 4a) = €279 4 (2 — 4a)? = g(a).

By FOC, ¢/(a) = —e%%" — 8(2 — 4a) = 0 when a ~ 0.533 Therefore, we can obtain next
solution by the gradient descent method:
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