Operations Research, Spring 2016
 Pre-lecture Problems for Lecture 5:
 Applications of Linear Programming

Instructor: Ling-Chieh Kung
Department of Information Management National Taiwan University

Note. The deadline of submitting the pre-lecture problem is 10:10am, March 24, 2015. Please submit a hard copy of your work in class. Late submissions will not be accepted. Each student must submit her/his individual work. Submit ONLY the problem that counts for grades.

1. (0 point) Mary uses chemicals 1 and 2 to produce two drugs. Drug 1 must be at least 60% chemical 1. For example, blending 11 oz of chemical 1 and 9 makes there only $\frac{11}{11+9}=55 \%$ of chemical 1 , which does not make the produced drug 1 of the required quality. For drug 2 , there must be at least 50% chemical 2. Up to 100 oz of drug 1 can be sold at $\$ 6$ per oz; up to 90 oz of drug 2 can be sold at $\$ 5$ per oz. Up to 130 oz of chemical 1 can be purchased at $\$ 6$ per oz, and up to 80 oz of chemical 2 can be purchased at $\$ 4$ per oz. Formulate an LP that can be used to maximize Mary's profits.
2. (0 point) Linearize the following LP

$$
\begin{aligned}
\max & 5 \min \left\{x_{1}, x_{2}\right\}+3 x_{2} \\
\text { s.t. } & \max \left\{x_{1}+x_{2}\right\} \leq 16 \\
& x_{1}+4 x_{2} \leq 20 \\
& x_{2} \geq 8 \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

3. (10 points) Linearize the following LP

$$
\begin{aligned}
\max & 5 \min \left\{x_{1}, x_{2}\right\}-3 \max \left\{x_{2}, x_{1}+x_{3}\right\} \\
\text { s.t. } & x_{1}+\min \left\{x_{1}, x_{2}+4\right\} \geq\left|16-x_{1}\right|+\max \left\{x_{1}, 4 x_{2}-x_{3}\right\} \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
\end{aligned}
$$

