
Facility location problems Machine scheduling problems Vehicle routing problems

Operations Research

Applications of Integer Programming

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Applications of Integer Programming 1 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Road map

I Facility location problems.

I Machine scheduling problems.

I Vehicle routing problems.

Applications of Integer Programming 2 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Facility location problems

I One typical managerial decision is “where to build my facility?”
I Where to open convenience stores?
I Where to build warehouses or distribution centers?
I Where to build factories?
I Where to build power stations, fire stations, or police stations?

I A similar question is “where to locate a scarce resource?”
I Where to put a limited number of fire engines or ambulances?
I Where to put a limited number of police officers?
I Where to put a limited number of ice cream machines?

I These problems are facility location problems.
I In this lecture, we focus on discrete facility location problems: We

choose a subset of locations from a set of finite locations.

Applications of Integer Programming 3 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Facility location problems

I In general, there are some demand nodes and some potential
locations.
I We build facilities at locations to serve demands.
I E.g., build distribution centers to ship to retail stores.
I E.g., build fire stations to cover cities, towns, and villages.

I Facility location problems are typically categorized based on their
objective functions.

I In this lecture, we introduce three types of facility location problems:
I Set covering problems: Build a minimum number of facilities to cover

all demands.
I Maximum covering problems: Build a given number of facilities to

cover as many demands as possible.
I Fixed charge location problems: Finding a balance between benefit

of covering demands and cost of building facilities.

Applications of Integer Programming 4 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Set covering problems

I Consider a set of demands I and a
set of locations J .

I The distance (or traveling time)
between demand i and location j is
dij > 0, i ∈ I, j ∈ J .

I A service level s > 0 is given:
Demand i is said to be “covered”
by location j if dij < s.

I Question: How to allocate as few
facilities as possible to cover all
demands?

Applications of Integer Programming 5 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Set covering problems

I Let’s define the following parameter: aij = 1
if dij < s or 0 otherwise, i ∈ I, j ∈ J .

I Let’s define the following variables: xj = 1 if
a facility is built at location j ∈ J or 0
otherwise.

I The complete formulation:

min
∑
j∈J

xj

s.t.
∑
j∈J

aijxj ≥ 1 ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J.

I The weighted version: min
∑

j∈J wjxj .

Applications of Integer Programming 6 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Maximum covering problems

I Consider a set of demands I and a
set of locations J .

I The distances dij , service level s,
and the covering coefficient aij are
also given.

I We are restricted to build at most
p ∈ N facilities.

I Question: How to allocate at most
p facilities to cover as many
demands as possible?

Applications of Integer Programming 7 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Maximum covering problems

I Still let xj = 1 if a facility is built at location j ∈ J or 0 otherwise.

I Also let yi = 1 if demand i ∈ I is covered by any facility or 0 otherwise.

I The complete formulation:

max
∑
i∈I

yi

s.t.
∑
j∈J

aijxj ≥ yi ∀i ∈ I

∑
j∈J

xj ≤ p ∀j ∈ J

xj ∈ {0, 1} ∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I.

I The weighted version: max
∑

i∈I wiyi.

Applications of Integer Programming 8 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Fixed charge location problems

I Consider a set of demands I and a
set of locations J .

I At demand i, the demand size is
hi > 0.

I The unit shipping cost from
location j to demand i is dij > 0.

I The fixed construction cost at
location j is fj > 0.

I Question: How to allocate some
facilities to minimize the total
shipping and construction costs?

Applications of Integer Programming 9 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Fixed charge location problems

I We still need xjs: xj = 1 if a facility is built
at location j ∈ J or 0 otherwise.

I We now need yijs: yij = 1 if demand i ∈ I is
served by facility at location j ∈ J or 0
otherwise.

I The complete formulation:

min
∑
i∈I

∑
j∈J

hidijyij +
∑
j∈J

fjxj

s.t. yij ≤ xj ∀i ∈ I, j ∈ J∑
j∈J

yij = 1 ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J

yi ∈ {0, 1} ∀i ∈ I.

Applications of Integer Programming 10 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Fixed charge location problems

I The previous model is the uncapacitated version.
I A facility can serve any amount of demand.

I If facility at location j has a limited capacity Kj > 0, we may add the
capacity constraint ∑

i∈I

hiyij ≤ Kj ∀j ∈ J.

I The capacitated version is usually called the capacitated facility
location problem (abbreviated as CFL). The uncapacitated one is
abbreviated as UFL.

Applications of Integer Programming 11 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Remarks

I When to use set covering?
I When we are required to take care of (almost) everyone.
I E.g., fire stations and police stations.

I When to use maximum covering?
I When budgets are limited.
I E.g., cellular data networks.

I When to use fixed charge location?
I When service costs depends on distances.
I E.g., distribution centers.

I All the three models are NP-hard.
I For large instances, it really takes time to obtain an optimal solution.
I Many researchers look for effective heuristics for these problems.

Applications of Integer Programming 12 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Road map

I Facility location problems.

I Machine scheduling problems.

I Vehicle routing problems.

Applications of Integer Programming 13 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Machine scheduling problems

I In many cases, jobs/tasks must be assigned to machines.

I As an example, consider a factory producing one product for n
customers.
I Serial production: Only one job can be processed at one time.
I Each job has its due date.
I How to schedule the n jobs to minimize the total number of delayed jobs?

I In this example, scheduling is nothing but sequencing.
I Splitting jobs is not helpful.
I There are n! ways to sequence the n jobs.
I Is there a polynomial-time algorithm?

I The problems of scheduling jobs to machines are machine scheduling
problems.

Applications of Integer Programming 14 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Machine scheduling problems
I Machine scheduling problems can be categorized in multiple ways:
I Production mode:

I Single machine serial production.
I Multiple parallel machines.
I Flow shop problems.
I Job shop problems.

I Job splitting:
I Non-preemptive problems.
I Preemptive problems.

I Performance measurement:
I Makespan (the time that all jobs are completed).
I (Weighted) total completion time.
I (Weighted) number of delayed jobs.
I (Weighted) total lateness.
I (Weighted) total tardiness.

I And more.

Applications of Integer Programming 15 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Minimizing total tardiness on a single machine

I Consider scheduling n jobs on a single machine.

I Job j ∈ J = {1, 2, ..., n} has processing time pj and due time dj .

I Different schedules give these jobs different completion times. The
completion time of job j is denoted as Cj .

I For job j, its tardiness is1

Tj = max{Cj − dj , 0}.

I There is only one machine, which can process only one job at a time.

I How to schedule all the jobs to minimize the total tardiness
∑

j∈J Tj?

I While many researchers study specific properties and algorithms for
specific problems, we will only try to formulate the problem as an
integer program.

1Its lateness is Lj = Cj − dj , which may be negative.

Applications of Integer Programming 16 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Minimizing total tardiness on a single machine
I Let’s use Cj to be our decision variables.

I Suppose we schedule jobs 1, 2, ..., and n in this order, we will have
C1 = p1, C2 = p1 + p2, ..., and Cn =

∑n
i=1 pi.

I A Gantt chart is helpful to illustrate a schedule.

I Obviously, splitting jobs does not help for this problem. (Why?)

I Because the machine can start job 2 only after job 1 is completed, we
have C2 ≥ C1 + p2 as a constraint. But what if job 2 should be
scheduled before job 1?

Applications of Integer Programming 17 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Minimizing total tardiness on a single machine

I In a feasible schedule, job i is either before or after job j, for all j 6= i.

I Therefore, we need to satisfy at least one of the following two
constraints:

Cj ≥ Ci + pj and Ci ≥ Cj + pi.

I Let zij = 1 if job j is before job i or 0 otherwise, i ∈ J , j ∈ J , i < j.

I The constraints we need:

Ci + pj − Cj ≤Mzij

Cj + pi − Ci ≤M(1− zij)

I What value of M works?
I How about M =

∑
j∈J pj?

Applications of Integer Programming 18 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Minimizing total tardiness on a single machine
I It remains to linearize the objective function

min
∑
j∈J

max{Cj − dj , 0}.

I The complete formulation:

min
∑
j∈J

Tj

s.t. Tj ≥ Cj − dj ∀j ∈ J

Ci + pj − Cj ≤Mzij ∀i ∈ J, j ∈ J, i < j

Cj + pi − Ci ≤M(1− zij) ∀i ∈ J, j ∈ J, i < j

Tj ≥ 0, Cj ≥ 0 ∀j ∈ J

zij ∈ {0, 1} ∀i ∈ J, j ∈ J, i < j.

Applications of Integer Programming 19 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Minimizing makespan on parallel machines
I Consider scheduling n jobs on m parallel machines.

I Job j ∈ J = {1, 2, ..., n} has processing time pj .

I The capacity of machine i ∈ I = {1, 2, ...,m} is unlimited.

I A job can be processed at any machine. However, it can be processed
only on one machine.

I Different schedules give these jobs different completion times Cjs.

I The makespan of a schedule is maxj∈J Cj .

I How may we minimize the makespan?

Applications of Integer Programming 20 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Minimizing makespan on parallel machines

I As long as some jobs are assigned to a machine, the sequence on that
machine does not matter.

I The problem of minimizing makespan is just to assign jobs to
machines.

I Let xij = 1 if job j ∈ J is assigned to machine i ∈ I or 0 otherwise.

I On machine i ∈ I, the last job is completed at∑
j∈J

pjxij .

I The objective is to

min max
i∈I

{∑
j∈J

pjxij

}
.

How to linearize it?

Applications of Integer Programming 21 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Minimizing makespan on parallel machines

I The complete formulation is

min M

s.t. M ≥
∑
j∈J

pjxij ∀i ∈ I

∑
i∈I

xij = 1 ∀j ∈ J

xij ∈ {0, 1} ∀i ∈ I, j ∈ J.

I Sometimes people want to
maximize the completion time of
the least-loaded machine (for, e.g.,
fairness):

max M

s.t. M ≤
∑
j∈J

pjxij ∀i ∈ I

∑
i∈I

xij = 1 ∀j ∈ J

xij ∈ {0, 1} ∀i ∈ I, j ∈ J.

Applications of Integer Programming 22 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Road map

I Facility location problems.

I Machine scheduling problems.

I Vehicle routing problems.

Applications of Integer Programming 23 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Vehicle routing problems

I In many cases, we need to deliver/collect items
to/from customers in the most efficient way.

I E.g., consider a post officer who needs to deliver
to four addresses.

I The shortest path between any pair of two
addresses can be obtained.

I This is a routing problem: To choose a route
starting from the office, passing each address
exactly once, and then returning to the office.

I This is a sequencing problem; in total there are
4! = 24 feasible routes.

I Which route minimizes the total distance (or
travel time)?

Applications of Integer Programming 24 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Vehicle routing problems

I The problem described above is the famous
traveling salesperson problem.
I It assumes that the truck has ample capacity.

I Consider the truck towing bicycles in NTU. It
must start at the car pound, pass several
locations in NTU, and then return to the origin.
I However, the truck capacity is quite limited

(because too many people violate the parking
regulation).

I The driver needs to find multiple routes to cover
all the locations.

I The traveling salesperson problem (TSP) is a
special case of vehicle routing problems.

Applications of Integer Programming 25 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Traveling salesperson problem

I How to formulate the TSP into an integer program?

I Let’s consider a directed complete network G = (V,E).
I There are n nodes and n(n− 1) arcs.
I The arc weight for arc (i, j) is dij > 0.

I We select a few arcs in E to form a tour.
I To form a tour, we need to select n arcs.
I These n arcs should form a cycle passing all nodes.

I Let xij = 1 if arc (i, j) ∈ E is selected or 0 otherwise.
I The objective:

min
∑

(i,j)∈E

dijxij .

I How to ensure the routing requirement?
I Is

∑
(i,j)∈E

dijxij = n enough?

Applications of Integer Programming 26 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Traveling salesperson problem

I For node k ∈ V :
I We must select exactly one incoming arc:∑

i∈V,i6=k

xik = 1.

I We must select exactly one outgoing arc:∑
j∈V,j 6=k

xkj = 1.

I Now each node is on a cycle.

I However, these are not enough to prevent subtours.

Applications of Integer Programming 27 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Eliminating subtours: alternative 1

I There are at least two ways to eliminate subtours.

I For each subset of nodes with at least two
nodes, we limit the maximum number of arcs
selected:∑

i∈S,j∈S,i 6=j

xij ≤ |S| − 1 ∀S (V, |S| ≥ 2.

I When we have n nodes, we have 2n − n− 1
constraints.

Applications of Integer Programming 28 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

Eliminating subtours: alternative 2

I Let uis represent the order of passing nodes. More precisely, ui = k if
node i is the kth node to be passed in a tour.

I We add the following constraints:

u1 = 1

2 ≤ ui ≤ n ∀i ∈ V \ {1}
ui − uj + 1 ≤ (n− 1)(1− xij) ∀(i, j) ∈ E, i 6= 1, j 6= 1.

I If xij = 0, there is no constraint for ui and uj ; otherwise, uj must be
larger than ui by at least 1.

I If a tour does not contain node 1, the last constraint pushes those uis to
infinity and violates constraint 2.

I Note that only node 1 is not restricted by these constraints!

I When we have n nodes, we have n additional variables and
n + (n− 1)(n− 2) constraints.

Applications of Integer Programming 29 / 30 Ling-Chieh Kung (NTU IM)

Facility location problems Machine scheduling problems Vehicle routing problems

The complete formulation

I The complete formulation is

min
∑

(i,j)∈E

dijxij

s.t.
∑

i∈V,i 6=k

xik = 1 ∀k ∈ V

∑
j∈V,j 6=k

xkj = 1 ∀k ∈ V

xij ∈ {0, 1} ∀(i, j) ∈ E.

with either alternative 1 or alternative 2.

I Which alternative is better?

Applications of Integer Programming 30 / 30 Ling-Chieh Kung (NTU IM)

	Facility location problems
	Machine scheduling problems
	Vehicle routing problems

