
Programming Design, Spring 2013

Final Exam
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

Name: Student ID:

Note 1. In total there are 110 points for this exam. If you get more than 100 points, your official score
for this exam will only be 100.

Note 2. You do not need to return these problem sheets. Write down all your answers on the answer
sheets provided to you.

0. (5 points) In your opinion, what is the most difficult part of this course? If you are the instructor
of this course, what will you do to make students learn more?

Note. As you may expect, you will get 5 points as long as you write down anything reasonable.
Therefore, work on this problem seriously only if you have time.

1. (25 points; 5 points each) Answer the following questions.

(a) (1 point each) Which of the following are required to implement polymorphism?

i. Pointers.

ii. Recursion.

iii. A copy constructor.

iv. Inheritance.

v. Virtual functions.

(b) What are the main ideas of encapsulation? Briefly explain those ideas in your answer.

(c) (1 point each) Which of the following are included in a function signature?

i. The return type.

ii. The function name.

iii. The parameter types.

iv. The number of parameters.

v. The parameter names.

(d) What are the differences between function overloading and function overriding?

Note. One way to illustrate their differences is to clearly explain both of them.

(e) What is a memory leak? When do we see one? In a class with dynamic memory allocation,
how may we avoid it?

1



2. (45 points) In a university, a course may be offered during the weekdays (Monday, Tuesday, ...,
and Friday). As each weekday is divided into nine hours (1, 2, ..., and 9), a course occupies some
consecutive hours (e.g., your computer programming course occupies hours 6, 7, and 8 on Monday).
To describe these course, the following class Course is (partially) defined. Please note that as the
number of instructors can vary, we need to use dynamic memory allocation to store these names.

class Course

{

private:

string title; // the course title

string dept; // the department offering this course

int unit; // the number of units

int instCount; // the number of instructors

string* instructor; // the names of all the instructors

int day; // the day of this course (Monday, Tuesday, etc.)

int startTime; // the starting time of this course (1, 2, 3, ..., 9)

public:

// some functions for you to implement

};

(a) (5 points) Implement a constructor that has three arguments as the initial values of the
course title, department, and units. For those attributes with no initial value, initialize them
by yourself.

(b) (5 points) Implement an instance function bool setTime(int day, int startTime) that
validates day and startTime before the values of these arguments are assigned into the cor-
responding member variables. In particular, day can only be an integer between 1 and 5 and
startTime can only be an integer between 1 and 9. Moreover, startTime plus unit cannot
be greater than 10. If any argument fails the validation, return false and do not store these
two values; otherwise, return true and store these two values.

(c) (5 points) Consider the following member function

void Course::print()

{

cout << title << ", " << dept << ", " << unit << " unit(s)" << endl;

cout << instCount << " instructor(s):";

for(int i = 0; i < instCount; i++)

cout << instructor[i] << " ";

cout << endl;

// print out date and time

}

which prints out the basic information of this course. Write codes to replace the comment to
print out the lecture day and hours of this course. The output format should be “d: i-j”,
where d is Monday if day is 1, Tuesday if day is 2, ..., and Friday if day is 5, i is the starting
hour, and j is the ending hour. For example, if for a course day is 4, startTime is 6, and
unit is 3, the output should be Thursday: 6-8.

(d) (10 points) Implement an instance function void enterInstructor() in which the user can
first enter (cin) the number of instructors of this course and then enter those instructors’
names. These names should then be stored in a dynamic array that can be accessed through
the instance variable instructor. Note that this function may be called when there are
already some instructors’ names recorded. In this case, all the existing names should be
abandon and those ones entered in this invocation should be recorded.

(e) (10 points) Implement a copy constructor for this class with deep copy.

(f) (5 points) In the copy constructor, why the argument must be passed with call by reference
instead of call by value? Why the argument is set to be a constant variable?

(g) (5 points) Implement the destructor.

2



3. (15 points) Continue from Problem 2. Suppose now we want to implement a class LECourse to
describe liberal education courses. Beside all the attributes of Course, a liberal education course
has one more attribute, its category. For simplicity, we assume a liberal education course can
belong to only one course, which is recorded as an integer between 1 and 8. All the operations that
can be done on a Course must can also be done on a LECourse.

(a) (5 points) Write down the definition of this class LECourse by inheriting from Course. Include
a member variable int category for category and a constructor with four parameters for title,
department, unit, and category. Modify the definition of Course in Problem 3 if you need.

(b) (5 points) Implement the four-parameter constructor.

(c) (5 points) For an LECourse object, we want the function void print() can also print out the
attribute category. To do this, you need to override this function. Point out what do you
need to modify in the class Course and what do you need to add into the class LECourse.

4. (20 points) Continue from Problems 2 and 3. Suppose now we want to implement a class Schedule
to describe a student’s schedule. To do so, first a structure CNode is defined for course nodes:

class CNode

{

private:

Course c;

CNode* next;

public:

CNode(Course c) { this->c = c; next = NULL; }

};

The class Schedule is then partially defined as

class Schedule

{

// friend declaration

private:

int courseCount; // number of courses enrolled

CNode* head; // head of the linked list of courses enrolled

string timeTable[5][9]; // time table for this student

public:

void insert(CNode cn, int index);

CNode remove(int index);

// some functions for you to implement

};

You may assume that the functions insert and remove have been implemented correctly.

(a) (5 points) Write down friend declaration statements to declare Course, LECourse, and CNode

as friends of Schedule.

(b) (5 points) Implement a constructor for Schedule with no parameter. Initialize courseCount

to 0, head to what it should be, and all elements in timeTable to “idle”.

(c) (10 points) Implement a function void setTimeTable() to set up the time table according
to the course linked list. For each course contained in the linked list, the corresponding cells
in timeTable that are the lecture hours of this course should be marked with the course
title. For example, if the course “programming” is offered at the sixth, seventh, and eighth
hours on Monday, we should assign “programming” to timeTable[0][5], timeTable[0][6],
and timeTable[0][7]. You may assume that there is no overlapping of lecture hours among
different courses.

3


