
IM 1003: Computer Programming

Selection and Repetition

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 1 / 69

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Introduction

• In all programs we have seen so far, the flows are all sequential.

– The first statement is executed, and then the second, and then the third, ….

• For our programs to perform more tasks, we need some ways to

control the flow.

• In most modern high-level languages, including C++, flow control

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 2 / 69

• In most modern high-level languages, including C++, flow control

is done by the following two ideas:

– Selection.

– Repetition.

Outline

• Selection

– if-else

– Logical operators

– switch-case

• Repetition

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 3 / 69

• Repetition

• Scope of variables

Outline

• Suppose we want to write a program that displays the number of

days in the month specified by a user in a common (non-leap) year.

– Display 31 when the user enters 1, 28 when the user enters 2, etc.

• Is it possible to write this program with only what we have learned

so far?

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 4 / 69

so far?

– No!

– Our program must be able to choose a subset of statements to run

according to some conditions. This can be done by implementing a selection

in our program.

– (Unless we use an array, which is also a future topic.)

• Let’s study how to implement a selection with an if statement.

The if statement

if(condition)

{

statements

}

following statements

An expression whose return is treated as

a Boolean value

One or many statements

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 5 / 69

– If condition returns true, do those statements sequentially.

– Each statement in statements still ends with a semicolon.

– After the execution of statements, do the following statements.

The if statement

• The if statement itself is a statement.

• However, there should be no “;”.

• Examples:

int month = 0;

int month = 0;

cin >> month;

if(month == 1)

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 6 / 69

• What is ==?

int month = 0;

cin >> month;

if(month == 1)

{

cout << 31;

}

if(month == 1)

{

cout << 31;

}

if(month == 2)

{

cout << 28;

}

The comparison operators

• == checks whether the two sides of it are equal.

– Returns a Boolean value: true or false.

• It is very important to distinguish = and ==.

– When we write a = 20, it assigns 20 to a. The returned value is 20.

– When we write a == 20, it checks whether a equals 20. The returned value

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 7 / 69

– When we write a == 20, it checks whether a equals 20. The returned value

is either true or false.

– What happens to the following two programs?

int a = 0;

cin >> a;

if(a = 1)

{

cout << "a is 1";

}

int a = 0;

cin >> a;

if(a == 0)

{

cout << "a is 1";

}

The comparison operators

• All the following comparison operators return a Boolean value.
– >: bigger than

– <: smaller than

– >=: not smaller than

– <=: not bigger than

– ==: equals

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 8 / 69

– ==: equals

– !=: not equals

• As we will see, comparison operators are used extensively in
selection statements.

• Do distinguish “becomes” and “equals”!

– a = 20 reads “a becomes 20”.

– a == 20 reads “a equals 20”.

The block of an if statement

• Inside the pair of curly brackets,

there are statements that will be

executed when the condition is true.

int month = 0;

cin >> month;

if(month == 1)

{

cout << "January: ";

cout << 31 << ".";

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 9 / 69

• You may drop { } if there is only

one statement under the if statement.

cout << 31 << ".";

}

int month = 0;

cin >> month;

if(month == 1)

cout << 31;

• Inside the if block, statements are run if the condition is true.

• We may also use the else keyword to create an else block.
Inside the else block, statements are run if the condition is false.

The if-else statement

if(condition)

{

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 10 / 69

– An else block cannot exist without an if block!

{

statements

}

else

{

statements

}

• An example of an if-else statement:

The if-else statement

int a;
cin >> a;
if(a == 10)
{
cout << "a equals ten.\n";

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 11 / 69

– Both pairs of curly brackets may be dropped when there is only one
statement in the block.

cout << "a equals ten.\n";
}
else
{
cout << "a doesn't equal ten.\n";

}

• The income tax rate often varies according to the level of income.
– E.g., 5% for income below $20000 but 10% for the part above $20000.

• How to write a program to calculate the amount of income tax
based on an input amount of income?

An example

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 12 / 69

double income = 0, tax = 0; // Program 4.1 in the textbook
// PDSp13_03_01_tax

cout << "Please type in the taxable income: ";
cin >> income;

if (income <= 20000.0)
tax = 0.05 * income;

else
tax = 0.1 * (income - 20000) + 20000 * 0.05;

cout << "Tax amount: $" << tax << "\n“;

• An if-else statement can be put
in an if block.
– In this example, if both conditions are

true, statements A will be executed.

– If condition 1 is true but condition 2 is
false, statements B will be executed.

Nested if-else statement

if(condition 1)
{
if(condition 2)
{
statements A

}
else

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 13 / 69

false, statements B will be executed.

– If condition 1 is false, statements C
will be executed.

• An if-else statement can be put
in an else block.

• We may do this for whatever levels
of if-else we want.

else
{
statements B

}
}
else
{
statements C

}

Dangling if-else

• What does this mean? if(a == 10)

if(b == 10)

cout << "a and b are both ten.\n";

else

cout << "a is not ten?\n";

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 14 / 69

• It is: if(a == 10)

{

if(b == 10)

cout << "a and b are both ten.\n";

else

cout << "a is ten; b is not.\n";

}

Dangling if-else

• When we drop { }, our programs may be ambiguous.

• When the situation on the previous slide occurs, it is called the

dangling problem.

• To handle this, C++ defines that “one else will be paired to the

closest if that has not been paired with an else.”

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 15 / 69

closest if that has not been paired with an else.”

• Good programming style:

– Drop { } only when you know what you are doing.

– Align your { }.

– Indent your codes properly.

The else-if statement

• An if-else statement allows us

to respond to two conditions.

• When we want to respond to

three conditions, we may put an
if-else statement in an else

if(a < 10)

cout << “a < 10.”;

else

{

if(a > 10)

cout << “a > 10.”;

else

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 16 / 69

if-else statement in an else

block:

• For this situation, people
typically drop { } and put the

second if behind else to create

an else-if statement:

else

cout << “a == 10.”;

}

if(a < 10)

cout << “a < 10.”;

else if(a > 10)

cout << “a > 10.”;

else

cout << “a == 10.”;

The else-if statement

• An else-if statement is
generated by using two nested
if-else statements.

• It is logically fine if we do not use
else-if.

• However, if we want to use

if(month == 1)
cout << "31";

else if(month == 2)
cout << "28";

else if(month == 3)
cout << "31";

else if(month == 4)

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 17 / 69

• However, if we want to use
respond to more than three
conditions, using else-if
greatly enhance the readability of
our program.

else if(month == 4)
cout << "30";

else if(month == 5)
cout << "31";

// ...
else if(month == 11)
cout << "30";

else
cout << "31";

A small quiz

• Which if does the else accompany with?

if(a == 10)

{

if(b == 10)

cout << "Here?";

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 18 / 69

• Remember to indent blocks properly.

cout << "Here?";

}

else

cout << "There?";

Outline

• Selection
– if-else

– Logical operators

– switch-case

• Repetition

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 19 / 69

• Repetition

• Scope of variables

Logic operators

• In some cases, the condition for an if statement is complicated.

– If I love a girl and she also loves me, we will fall in love.

– If I love a girl but she does not love me, my heart will be broken.

• It will make our life easier to use logic operators to combine

multiple conditions into one condition.

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 20 / 69

multiple conditions into one condition.

• We have three logic operators:

– &&: and.

– ||: or.

– !: not.

Logic operators: and

• The and operator operates on two conditions.

– Each condition is an operand.

• It returns true if both conditions are true. Otherwise it returns false.

– (3 > 2) && (2 > 3) returns false.

– (3 > 2) && (2 > 1) returns true.

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 21 / 69

– (3 > 2) && (2 > 1) returns true.

• When we use it in an if statement, the grammar is:

if(condition 1 && condition 2)

{

statements

}

Logic operators: and

• An and operation can be used to replace a nested if statement.

– The nested if statement

if(a > 10)

{

if(b > 10)

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 22 / 69

is equivalent to

if(b > 10)

cout << "a is between 10 and 20;";

}

if(a > 10 && b > 10)

cout << "a is between 10 and 20;";

Logic operators: or

• The or operator returns true if at least one of the two conditions is

true. Otherwise it returns false.

– (3 > 2) || (2 > 3) returns true.

– (3 < 2) || (2 < 1) returns false.

• When the or operator is used in an if statement, the statements

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 23 / 69

• When the or operator is used in an if statement, the statements

will be executed if the two conditions are not both false.

If(condition 1 || condition 2)
{
statements

}

• The not operator returns true if the condition is false.

– !(2 > 3) returns true.

– !(2 > 1) returns false.

• It is used when we have statements only in the else block:

– The following two sets of codes are equivalent:

Logic operator: not

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 24 / 69

– The following two sets of codes are equivalent:

if(condition)

;

else

{

statements

}

if(!condition)

{

statements;

}

Logic operators: associativity

• The && and || operators both associate the two operands

(conditions) from left to right.

• It is possible that the second condition is not evaluated at all.

– If evaluating the condition at left allows the result to be determined.

• What will be the outputs? int a = 0, b = 0;

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 25 / 69

• What will be the outputs? int a = 0, b = 0;

if(a > 10 && b++ == 0)

;

cout << b << "\n";

if(a < 10 || ++b == 0)

;

cout << b << "\n";

Logic operators: precedence

• You may find the precedence rule of logic operators.

• You do not need to memorize them: Just use parentheses.

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 26 / 69

Example

• Ask the user to input two

characters. If

– one of them (not necessarily

the first one) is ‘a’ and

– the other (not necessarily the

char c1 = 0, c2 = 0;

cin >> c1;

cin >> c2;

if((c1 == 'a' && c2 == 'b') ||

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 27 / 69

second one) is ‘b’,

output “a and b”.

• Otherwise, output “not (a

and b)”.

• How to do this without a

nested selection?

if((c1 == 'a' && c2 == 'b') ||

(c1 == 'b' && c2 == 'a'))

cout << "a and b.\n";

else

cout << "not (a and b)";

Outline

• Selection
– if-else

– Logical operators

– switch-case

• Repetition

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 28 / 69

• Repetition

• Scope of variables

• The second way of implementing a
selection is to use a switch-case

statement.

• It is particularly useful for

responding to multiple values of a

The switch-case statement

switch(operation)

{

case value 1:

statements

break;

case value 2:

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 29 / 69

responding to multiple values of a

single operation.

case value 2:

statements

break;

...

default:

statements

break;

}

• There is no semicolon at the end.

The switch-case statement

switch(operation)

{

...

}

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 30 / 69

• There is no semicolon at the end.

• The operation can contain only a single operand.

• The operation must return an integer (int, bool, char, etc.).

• After each case, there is a value.

– If the returned value of the operation equals

that value, those statements in the case

block will be executed.

– A colon is needed after the value.

The switch-case statement

switch(operation)

{

case value 1:

statements

break;

case value 2:

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 31 / 69

• Restrictions on those values:

– Must be literals or constant variables.

– Must be integers.

– Must all be different.

– Otherwise, there will be a compilation error.

statements

break;

...

}

• No curly brackets are needed for

those blocks.

– You may add them if you want.

• Those breaks mark the end of each

block.

The switch-case statement

switch(operation)

{

case value 1:

statements

break;

case value 2:

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 32 / 69

block.

– The break of the last section is optional.
statements

break;

...

case last value:

statements

break;

}

• Two examples:

– What will happen if we enter 10?

The switch-case statement

int a;
cin >> a;

switch(a)

int a;
cin >> a;

switch(a)

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 33 / 69

switch(a)
{
case 10:
cout << "a is ten.";
break;

case 20:
cout << "a is twenty.";
break;

}

switch(a)
{
case 10:
cout << "a is ten.";

case 20:
cout << "a is twenty.";
break;

}

The switch-case statement: break

• Without a break, the program will continue.

• Dropping a break is sometimes useful:

char a;

cin >> a;

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 34 / 69

switch(a)

{

case 'c':

case 'C':

cout << "This is c or C.";

}

The switch-case statement: default

• The default block will be

executed if no case value

matches the operation’s

return value.

• You may add a break at

int a;
cin >> a;

switch(a)
{
case 10:
cout << "a is ten.";

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 35 / 69

• You may add a break at

the end of default or not.

It does not matter.

cout << "a is ten.";
break;

case 20:
cout << "a is twenty.";
break;

default:
cout << a << "\n";

}

Which selection to use?

• if can do everything that can be done by switch.

• switch can do everything that can be done by if.

• As a beginner, just choose the one you like or are more familiar

with. When you are more experienced, you can build your own

style.

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 36 / 69

style.

Outline

• Selection

• Repetition

– while

– break and continue

– for

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 37 / 69

– for

– Nested and infinite loops

• Scope of variables

The while statement

• In a while loop, there is a condition and a set of statements.

• When the condition specified in the while statement is satisfied:

– First, the set of statements will be executed.

– And then the condition will be evaluated again! If it is still satisfied, those

statements will be executed again.

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 38 / 69

statements will be executed again.

• The condition is expressed as an operation which returns a

Boolean value, i.e., true or false.

The while statement: grammar

• If operation returns true, execute statements and then re-

while(operation)

{

statements

}

further statements

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 39 / 69

• If operation returns true, execute statements and then re-

evaluate operation again.

• Otherwise, exit the loop and execute further statements.

• No semicolon after }.

– If you add one, nothing will change. Why?

• In the following example, the user is required to choose either yes

or no by typing ‘y’ or ‘n’. If she enters other characters, she should

be asked to enter again.

The while statement: example

char a = 0;

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 40 / 69

cin >> a;

while(a != 'y' && a != 'n')

{

cin >> a;

}

// here a must be either 'y' or 'n'

The while statement: remarks

• You may drop the pair of curly brackets if there’s only one
statement in this while loop.

– People seldom, if not never, do that. Why?

• You must use curly brackets to specify the range of the block if

there are more than one statements in the loop.

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 41 / 69

there are more than one statements in the loop.

• Apply indention.

• Let’s calculate the sum 1 + 2 + … + 1000.

The while statement: example

a = 1;

int sum = 0;

while(a <= 1000) // or a != 1000

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 42 / 69

• How to calculate factorials?

while(a <= 1000) // or a != 1000

{

sum = sum + a;

a++;

}

cout << sum;

• Write a program to print 10 to –10 with the step size –2.

The while statement: example

num = 10;

while(num >= -10) // or num != -10

{

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 43 / 69

{

cout << num << " ";

num -= 2;

}

• Recall that we validated a user input with a while statement:

The do-while statement

char a = 0;

cin >> a;

while(a != 'y' && a != 'n')

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 44 / 69

• One drawback of this program is that the same code cin >> a;

must be written twice.

• To avoid such a situation, we may use a do-while statement.

while(a != 'y' && a != 'n')

{

cin >> a;

}

• The grammar:

The do-while statement

do

{

statements

}while(operation);

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 45 / 69

– In any case, statements in a do-

while loop must be executed at

least once.

– If the returned value of operation is

true, the loop will be executed again.

– The semicolon is needed.

}while(operation);

char a = 0;

do

{

cin >> a;

}while(a != 'y' && a != 'n');

break

• When we implement a repetition process, sometimes we need to

further change the flaw of execution of the loop.

• A break statement exit the loop immediately.

– Suppose a teacher wants to calculate the average grade of all students.

– She will keep entering grades in a while loop.

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 46 / 69

– She will keep entering grades in a while loop.

– The way to indicate the end of the input process is by entering a negative

number.

– How to write a program like this?

break

double grade = 0, avgGrade = 0;

double totalGrade = 0;

int gradeCount = 0;

while(true) // infinite loop

{

• Is there anything

wrong with this

program?

• Logically it is right

as long as the user

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 47 / 69

{

cin >> grade;

if(grade < 0)

break;

totalGrade += grade;

gradeCount++;

}

avgGrade = totalGrade / gradeCount;

as long as the user

enters at least one

valid grade.

• How to modify it?

continue

• When the continue statement is executed, all statement after it in
the loop will be skipped.
– The looping condition will be checked immediately.

– If it is satisfied, the loop starts from the beginning again.

• How to write a program to print out all integers from 1 to 100
except multiples of 10?

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 48 / 69

except multiples of 10?

int a = 0;
while(a <= 100)
{
a++;
if(a % 10 == 0)
continue;

cout << a << “ “;
}

break and continue

• The effect of break and continue

is just on the current level.

• If a break or continue is used in

an inner loop, the execution jumps

to the outer loop.

int a = 0, b = 0;
while(a <= 10)
{
while(b <= 10)
{
if(b == 5)
break;

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 49 / 69

to the outer loop.

• What will be printed out at the end

of this program?

break;
cout << a * b << "\n";
b++;

}
a++;

}
cout << a << "\n"; // ?

Outline

• Selection

• Repetition
– while

– break and continue

– for

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 50 / 69

– for

– Nested and infinite loops

• Scope of variables

The for statement

• Another way of implementing a loop is to use a for statement.

• A for statement looks more complicated:

for(initialization; condition; dosomething)

{

statements

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 51 / 69

– initialization: Statements that are executed once at the beginning.

– condition: If the condition is satisfied, repeat the loop again.

– do something: Statements that are executed when an iteration ends.

– statements: The main body of the loop.

• The curly brackets can be dropped if there is only one statement.

statements

}

The for statement

for(initialization; condition; dosomething)

{

statements

}

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 52 / 69

True
Initialization Condition Statements Do something

Start End

False

The for statement

• You need those two “;” in the ().

for(initialization; condition; dosomething)

{

statements

}

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 53 / 69

• You need those two “;” in the ().

• The typical way of using a for statement is:

– initialization: Initialize a counter variable here.

– condition: Set up the condition for the counter variable.

– do something: Modify (mostly increment or decrement) the counter.

• Let’s calculate the sum of 1 + 2 + … + 1000:

The for statement

int sum = 0;

for(int i = 1; i <= 1000; i++)

sum = sum + i;

cout << sum;

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 54 / 69

– We first declare and initialize the counter variable i: int i = 1.

– We then check the condition: i <= 1000.

– We execute the statement: sum = sum + i;.

– We then increment the counter: i++. i becomes 2.

– Then we go back to check the condition, and so on, and so on.

cout << sum;

// i is the counter

• A typical for statement:

Decomposing the for statement

initialization

for(; ;)

{

if(condition)

for(initialization; condition; dosomething)

{

statements

}

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 55 / 69

• An equivalent for statement:

• for(; ;) is equivalent to while(true).

They are both infinite loops.

if(condition)

{

statements

dosomething

}

else

break;

}

• To add from 1 to 1000:

Decomposing the for statement

int sum = 0;
int i = 1;
for(; ;)
{
if(i != 1000)
{

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 56 / 69

{
sum = sum + i;
i++;

}
else
break;

}
cout << sum;

Good programming style

• When you need to execute a loop for a fixed number of iterations,
use a for statement with a counter declared only for the loop.

– This also applies if you know the maximum number of iterations.

• When choosing between while, do-while, and for, use the one

that makes your program the most readable.

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 57 / 69

that makes your program the most readable.

• Do not do too many things inside the () of a for statement.

– Typically only the counter variable enters this section!

Multi-counter for loops

• Inside one for statement:

– You may initialize multiple counters at the same time.

– You may also check multiple counters at the same time.

– You may also modify multiple counters at the same time.

• Use “,” to separate operations on multiple counters.

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 58 / 69

• Use “,” to separate operations on multiple counters.

• If any of the conditions is false, the loop will be terminated.

• As an example:

• Try to find alternatives before you use it.

for(int i = 0, j = 0; i < 10, j > -5; i++, j--)

cout << i << " " << j << "\n";

Good programming style

• You may use double or float as the type of a counter, but this is

not recommended.

– Use integer only!

• Drop { } only when you know what you are doing.

• Align your { }.

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 59 / 69

• Align your { }.

• Indent your codes properly.

Outline

• Selection

• Repetition
– while

– break and continue

– for

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 60 / 69

– for

– Nested and infinite loops

• Scope of variables

• Like the selection process, loops can also be nested.

– Outer loop, inner loop, most inner loop, etc.

Nested loops

while(...)
{
for(...; ...; ...)
{

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 61 / 69

for(...; ...; ...)
{
do
{
...

}while(...);
}

}

Nested loops

• Nested loops are not always necessary, but they can be helpful.

– Particularly when we need to handle a multi-dimensional case.

• E.g., let’s write a program to output some integer points on an (x,

y)-plane like this:

(1, 1) (1, 2) (1, 3)

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 62 / 69

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

• This can still be done with only one level of loop, but using a

nested loop is much easier.

• The program is below:

Example of nested loops

for(int x = 1; x < 4; x++)

{

for(int y = 1; y < 4; y++)

cout << "(" << x << ", " << y << ") ";

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 63 / 69

– How to modify the program to allow a user to choose the upper bounds of x

and y?

– Where do we put the new line statement? In the inner or outer loop? Why?

cout << "(" << x << ", " << y << ") ";

cout << " ";

}

Infinite loops

• An infinite loop is a loop that does not terminate.

• Usually an infinite loop is a logical error made by the programmer.

int a = 0;

while(a >= 0)

a++;

while(true)

…

for(; ;)

…

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 64 / 69

• Usually an infinite loop is a logical error made by the programmer.

– When it happens, check your program.

• Sometimes we create it in purpose.

– See the examples of break.

• When your program does not stop, press <Ctrl + C>.

Outline

• Selection

• Repetition

• Scope of variables

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 65 / 69

The scope of variables

• Each variable has its life scope.

– Where it can be accessed by the program.

• For all the variables you have seen so far, they live only in the

block in which they are declared.

if(...) while(...)

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 66 / 69

if(...)

{

int a = 10;

...

}

a = 20; // error

while(...)

{

int a = 10;

...

}

a = 20; // error

The scope of variables

• Some more example:

for(int i = 0; i < 10; i++)

{

...

}

i = 20; // error

int i;

for(i = 0; i < 10; i++)

{

...

}

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 67 / 69

i = 20; // error }

i = 20; // ok!

The scope of variables

• In ANSI C++, we can do this:

for(int i = 0; ...; ...)

{

...

}

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 68 / 69

}

for(int i = 0; ...; ...)

{

...

}

The scope of variables

• Two variables declared in the same level cannot have the same

variable name.

• However, this is allowed if one is declared in an inner block.

int a = 0; – In the inner block, after the same

variable name is used to declare a

Ling-Chieh Kung NTU IM

Programming Design, Spring 2013 – Selection and Repetition 69 / 69

if(...)

{

cout << a << "\n"; // ?

int a = 10;

cout << a << "\n"; // ?

}

cout << a << "\n"; // ?

variable name is used to declare a

new variable, it “replaces” the

original one.

– However, its life ends when the

inner block ends.

