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Algorithms

* There is an old saying:
Programming design = Data structures + Algorithms.

* While Data Structures and Algorithms are two advanced courses,
in this semester we will give very brief introductions.

* Today let’s talk about algorithms.
* What is an algorithm?
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Algorithms

* An algorithm is a sequence of actions (steps), arranged in a
specific order, that completes a task.
— All steps must be precise and executable.

* E.g., if the task is to “get 100 in the final exam of Calculus”, what
is an algorithm for this task?

— “Writing down correct answers on the answer sheet” is not.

CLINY3

— “Reading the textbook thoroughly”, “completing all the exercises”, “have a

good sleep in the previous night”, “go to the classroom on time”, and “be
relax and confident” look more like an algorithm.

* Let’s see some more concrete examples.
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Algorithms

* How to find the maximum number in an array?
* An algorithm is:

— First set the maximum number to 0.

— For each element in the array, check whether it is larger than the maximum
number.

— If so, replace the maximum number by the current element. Otherwise, do
nothing and check the next element.

— Once all elements are checked, report the resulting maximum number.

* Note that all the steps are precise and executable.
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Pseudocodes

* An algorithm is usually described by pseudocodes:
— A description in words that is organized in a programming style.
— Use selection, repetition, variables, and indices precisely.

* The pseudocode for the previous algorithm is:

Consider an array A with n elements

Set max to 0.
For i from 1 to n:
If A, > max
max=A,.
Output max.
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Pseudocode vs. implementation

* A pseudocode describes an algorithm.
— Itignores the syntax issue of a specific programming language.
— It can be implemented by different programming languages.

* For example, in C++:

int array[5] = {1, 2, 3, 4, 8};
int max = 0;

for(int i = 0; i < 5; i+H)

if (array[i] > max)
max = array[i];
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Correctness of algorithms

* For a task, an algorithm may be right or wrong.
— Is the algorithm still correct for arrays with negative numbers?

Consider an array A with n elements
Set max to 0.
For i from 1 to n:
If A; > max
max =A,.
Output max.

— If not, how to modify it?

Consider an array A with n elements
Set max to A;.
For i from 2 to n:
If A; > max
max =A,;.
Output max.
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Efficiency of algorithms

* For a task, an correct algorithm may be efficient or inefficient.
— Are these two algorithms both correct?
— Which one is more efficient?

Consider an array A with n elements Consider an array A with n elements
Set maxto A. Set maxto A;.
For i from 2 to n: For i from 2 to n:
If A; = max If A, > max
max =A;. max =A;.
Output max. Output maz.

* Among all correct algorithms, we want to find one that is efficient.

Efficiency of algorithms

* The efficiency (sometimes called performance) of different
algorithms may vary a lot.

* How to find both the maximum and minimum numbers in an array?

Consider an array A with n elements ~ Consider an array A with n elements
Set max to A,. Set min to A;. Set max to A,. Set min to A,.

For i from 2 to n: For i from 2 to n:
If A, > max If A, > max
max=A,. max =A,.

If A, < min Else if A; < min
min=A,. min=A,.

Output max and min. Output max and min.

— Which one is more efficient?
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* An algorithm is a sequence of steps for completing a task.
* An algorithm should first be correct. Then it should be efficient.
* An algorithm is typically described by pseudocodes.

— Ignore the implementation details when you design your program!
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Combinatorial problems

* Combinatorial problems (or discrete problems) brings many

challenges and interesting findings in the field of Computer

Science, Operations Research, and various fields of Engineering.

* Roughly speaking, in a combinatorial problem, one tries to find a

subset of “items” such that:
— The selection fits a requirement, or
— The selection is optimal with respect to an objective function.

* In the former case, it is a combinatorial decision problem.

* In the latter case, it is a combinatorial optimization problem.
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Dominating sets

* Consider the following example
“dominating set”:

— We are given a graph, which contains a
set of nodes and set of links.

— A dominating set is a set of nodes D
such that all nodes not in D is adjacent
to at least one node in D.

— For a graph, there may be more than one
dominating sets.
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Dominating sets

* The decision version of this problem:
“Is there any dominating set that
contains no more than k nodes?”

* The optimization version of this
problem: “Find the dominating set
that contains the smallest number of
nodes.”
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Greedy algorithms

* How would you solve a dominating set problem?

* For a combinatorial problem, typically we may try a greedy
algorithm:

— Ateach step, select one item that “at this moment” seems to be the best.

* For the dominating set problem,
a greedy algorithm may be:

— Before all nodes are either in D or
adjacent to one node in D, select a
node that is not in D and adjacent
to most not-in-D nodes.

* Does a greedy algorithm always
find an optimal solution?
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Complete enumeration

* Another extreme way of solving a combinatorial problem is
through a complete enumeration.
— Also called the brute-force algorithm.

— Simply enumerate all the possible selections, compare them, and find the
best one.

* Does a complete enumeration always find an optimal solution?

* How many possible selections do we have for this graph?
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Exponential-time algorithms

* While a greedy algorithm is efficient, it may not be correct.
* While a complete enumeration is correct, it is too inefficient.
— Especially when the problem size is large.

* Regarding the dominating set problem, suppose the given graph
has n nodes, a complete enumeration needs to evaluate 2" possible
selections.

* Such an algorithm is said to be an exponential-time algorithm.

— Which is not practical for large-scale problems.
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Polynomial-time algorithms

* On the contrary, some algorithms run in a polynomial time.

— The number of actions to be done is at most a polynomial function of the
problem size.

* To find the maximum and minimum numbers in a array:
— At most how many actions will be done?

Consider an array A with n elements Consider an array A with n elements
Set maxto A,. Set min to A,. Set max to A,. Set min to A,.
For i from 1 to n: For i from 1 to n:
If A; > max If A; > max
max =A,;. max =A;.
If A; < min Else if A; < min
min = A, min = A,
Output max and min. Output max and min.
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Algorithm complexity

* For the same task, using different algorithms may result in
completely different execution time!
* Consider the following example:

— For n? squares arranged into a big square, how many different routes, which
do not travel the same edge twice, do we have from the left-top corner to the
right-bottom corner?

[]

¢ Let’s watch the video!
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Algorithm complexity

* The issues of algorithm complexity and efficiency lie at the heart
of Computer Science.
— Will be discussed extensively in Discrete Mathematics, Algorithms, and
Theory of Computation.
* At this time, all we need to know is that “among all algorithms,
some are better and some are worse.”
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The knapsack problem

* The knapsack problem is one of the most fundamental problems
in Computer Science.

* Itis a problem that is “easy to describe but hard to solve.”

* The problem:

— We are given a knapsack (backpack) and a set of items.

These items have various weights and values.
We want to select some items to maximize the total value.

But the total weight cannot exceed the knapsack capacity.
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The knapsack problem

* Problem input:
— The weight of items: w, w,, ..., w,.
— The value of items: v, vy, ..., V,.

n

— The weight limit of the knapsack B.
¢ Problem formulation:

— Letx; =1 if item i is selected and O otherwise.

— The problem:
n
max Z VX,
i=1
n
s.t. Z wx; <B
i=1
x,€e{01}Vi=1,..,n.
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A greedy algorithm

* How to solve the knapsack problem?
* Let’s consider the following greedy algorithm:

— For each unselected item that can be select (selecting it does not exceed the
knapsack capacity), select the one which has the largest v; / w; ratio.

— Keep doing so until we can select no more item.
* Will the optimal solution be found for the following instance?
— Khnapsack capacity: B = 6.

— 4 items:

Wi

(NS NS
N W

3
4
4

AN W | B

Vi

* Any idea to modify this algorithm?
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NP-hardness

* Amazingly, no one knows how to solve this problem efficiently!
* It has been shown that the knapsack problem belongs to the class
of “NP-hard” problems.
— No one has found a method that is better than complete enumeration.
— Most people believe a polynomial-time algorithm does not exist.
* Even the following simplification is NP-hard:

— Given some items with various weights and a knapsack with a fixed
capacity, is there a way of selecting a subset of items to exactly fill the
knapsack?

— Note that this is a decision problem.
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NP-hardness

* So what should we do if we really need a solution?
* Fortunately, the knapsack problem is weakly NP-hard:

— There exists pseudo-polynomial algorithms.
— We will introduce an algorithm based on dynamic programming.
— The algorithm requires selection, repetition, and matrices.

* Given a capacity B and a set of items with weights w,, w,, ..., w,:
— We want to determine whether there is a set such that items in that set

together weigh exactly B.
— If so, we want to determine which items should be selected.
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The dynamic programming algorithm

e Letw=(w;, w,, ..., w,) be the weight vector and B be the capacity.
* Let P(B, n) be the problem of capacity B and weights w,, ..., w,.
* For the problem with w = (2, 3,4, 5) and B = 6:
— P(6,4) is our original problem.
— P(6, 3) is to fill a knapsack of capacity 6 with w = (2, 3, 4).
— P(5, 3) is to fill a knapsack of capacity 5 with w = (2, 3, 4).
» The answer of P(B, n) has three possibilities:
— P(B, n) = IMP if these n items cannot fill the knapsack.
— P(B, n) = NS if they can fill the knapsack by not selecting item n.
— P(B, n) =S if they can fill the knapsack by selecting item 7.
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The dynamic programming algorithm

* Example: w=(2,3,4,5) and B =6.
* A problem can be solved by solving “smaller” problems:
— Suppose we know P(6, 3) = NS or S, then we know P(6, 4) = NS.
— Suppose we know P(1, 3) = NS or S, then we know P(6, 4) = S.
— Suppose we know P(6, 3) = P(1, 3) = IMP, does P(6, 4) = IMP?
* And also problems with only 1 item is easy:
— P(0,1)=NS, P(2,1)=S, P(B, 1) =IMP for all B that are not 0 or 2.
* So we may do an iterative bottom-up solution process:
— First problems with only 1 item.
— Then 2 items.
— And so on.
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The dynamic programming algorithm

* Solving this problem with a matrix:

w; /B 0 1 2 3 4 5 6
2 NS IMP IMP IMP IMP IMP
3 NS IMP S IMP S IMP
4 NS IMP NS NS S NS
5 NS IMP NS NS NS SorNS

* The last cell is what we want. The answer is “Yes, we may fill a
knapsack of capacity 6 with the four items.”

¢ How to determine the items to be selected?
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Implementation

* How to implement this algorithm?
* Prepare a two-dimensional array.
— Each element records the answer of that subproblem.
* Find the values of the array by a two-level loop.
— The outer loop checks 1 item, 2 items, ..., and # items.
— The inner loop checks capacity 0, 1, 2, ..., and B.
* For each subproblem:
— If condition 1 is true, write S into this element.
— If condition 2 is true, write NS into this element.
— Otherwise, write IMP.
* What if both conditions are true?
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Efficiency

* Is this algorithm efficient?
* Typically yes, but no if the knapsack capacity is really large...
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