IM 1003: Computer Programming
Algorithms

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 1/32

Outline

* Algorithms
* Combinatorial problems
* The knapsack problem

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 2/32

Algorithms

* There is an old saying:
Programming design = Data structures + Algorithms.

* While Data Structures and Algorithms are two advanced courses,
in this semester we will give very brief introductions.

* Today let’s talk about algorithms.
* What is an algorithm?

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 3/32

Algorithms

* An algorithm is a sequence of actions (steps), arranged in a
specific order, that completes a task.
— All steps must be precise and executable.

* E.g., if the task is to “get 100 in the final exam of Calculus”, what
is an algorithm for this task?

— “Writing down correct answers on the answer sheet” is not.

CLINY3

— “Reading the textbook thoroughly”, “completing all the exercises”, “have a

good sleep in the previous night”, “go to the classroom on time”, and “be
relax and confident” look more like an algorithm.

* Let’s see some more concrete examples.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 41732




Algorithms

* How to find the maximum number in an array?
* An algorithm is:

— First set the maximum number to 0.

— For each element in the array, check whether it is larger than the maximum
number.

— If so, replace the maximum number by the current element. Otherwise, do
nothing and check the next element.

— Once all elements are checked, report the resulting maximum number.

* Note that all the steps are precise and executable.

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 - Algorithms

5/32

Pseudocodes

* An algorithm is usually described by pseudocodes:
— A description in words that is organized in a programming style.
— Use selection, repetition, variables, and indices precisely.

* The pseudocode for the previous algorithm is:

Consider an array A with n elements

Set max to 0.
For i from 1 to n:
If A, > max
max=A,.
Output max.
Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 6/32

Pseudocode vs. implementation

* A pseudocode describes an algorithm.
— Itignores the syntax issue of a specific programming language.
— It can be implemented by different programming languages.

* For example, in C++:

int array[5] = {1, 2, 3, 4, 8};
int max = 0;

for(int i = 0; i < 5; i+H)

if (array[i] > max)
max = array[i];

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Algorithms

7/32

Correctness of algorithms

* For a task, an algorithm may be right or wrong.
— Is the algorithm still correct for arrays with negative numbers?

Consider an array A with n elements
Set max to 0.
For i from 1 to n:
If A; > max
max =A,.
Output max.

— If not, how to modify it?

Consider an array A with n elements
Set max to A;.
For i from 2 to n:
If A; > max
max =A,;.
Output max.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 8/32




Efficiency of algorithms

* For a task, an correct algorithm may be efficient or inefficient.
— Are these two algorithms both correct?
— Which one is more efficient?

Consider an array A with n elements Consider an array A with n elements
Set maxto A. Set maxto A;.
For i from 2 to n: For i from 2 to n:
If A; = max If A, > max
max =A;. max =A;.
Output max. Output maz.

* Among all correct algorithms, we want to find one that is efficient.

Efficiency of algorithms

* The efficiency (sometimes called performance) of different
algorithms may vary a lot.

* How to find both the maximum and minimum numbers in an array?

Consider an array A with n elements ~ Consider an array A with n elements
Set max to A,. Set min to A;. Set max to A,. Set min to A,.

For i from 2 to n: For i from 2 to n:
If A, > max If A, > max
max=A,. max =A,.

If A, < min Else if A; < min
min=A,. min=A,.

Output max and min. Output max and min.

— Which one is more efficient?

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 10/32

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 9/32

* An algorithm is a sequence of steps for completing a task.
* An algorithm should first be correct. Then it should be efficient.
* An algorithm is typically described by pseudocodes.

— Ignore the implementation details when you design your program!

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 11/32

Outline

* Algorithms
* Combinatorial problems
* The knapsack problem

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 12/32




Combinatorial problems

* Combinatorial problems (or discrete problems) brings many

challenges and interesting findings in the field of Computer

Science, Operations Research, and various fields of Engineering.

* Roughly speaking, in a combinatorial problem, one tries to find a

subset of “items” such that:
— The selection fits a requirement, or
— The selection is optimal with respect to an objective function.

* In the former case, it is a combinatorial decision problem.

* In the latter case, it is a combinatorial optimization problem.

Ling-Chieh Kung
Programming Design , Spring 2013 - Algorithms

NTU IM
13/32

Dominating sets

* Consider the following example
“dominating set”:

— We are given a graph, which contains a
set of nodes and set of links.

— A dominating set is a set of nodes D
such that all nodes not in D is adjacent
to at least one node in D.

— For a graph, there may be more than one
dominating sets.

Ling-Chieh Kung
Programming Design , Spring 2013 - Algorithms

NTU IM
14/32

Dominating sets

* The decision version of this problem:
“Is there any dominating set that
contains no more than k nodes?”

* The optimization version of this
problem: “Find the dominating set
that contains the smallest number of
nodes.”

Ling-Chieh Kung
Programming Design , Spring 2013 - Algorithms

NTU IM
15/32

Greedy algorithms

* How would you solve a dominating set problem?

* For a combinatorial problem, typically we may try a greedy
algorithm:

— Ateach step, select one item that “at this moment” seems to be the best.

* For the dominating set problem,
a greedy algorithm may be:

— Before all nodes are either in D or
adjacent to one node in D, select a
node that is not in D and adjacent
to most not-in-D nodes.

* Does a greedy algorithm always
find an optimal solution?

Ling-Chieh Kung
Programming Design , Spring 2013 - Algorithms

NTU IM
16/32




Complete enumeration

* Another extreme way of solving a combinatorial problem is
through a complete enumeration.
— Also called the brute-force algorithm.

— Simply enumerate all the possible selections, compare them, and find the
best one.

* Does a complete enumeration always find an optimal solution?

* How many possible selections do we have for this graph?

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 17/32

Exponential-time algorithms

* While a greedy algorithm is efficient, it may not be correct.
* While a complete enumeration is correct, it is too inefficient.
— Especially when the problem size is large.

* Regarding the dominating set problem, suppose the given graph
has n nodes, a complete enumeration needs to evaluate 2" possible
selections.

* Such an algorithm is said to be an exponential-time algorithm.

— Which is not practical for large-scale problems.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 18732

Polynomial-time algorithms

* On the contrary, some algorithms run in a polynomial time.

— The number of actions to be done is at most a polynomial function of the
problem size.

* To find the maximum and minimum numbers in a array:
— At most how many actions will be done?

Consider an array A with n elements Consider an array A with n elements
Set maxto A,. Set min to A,. Set max to A,. Set min to A,.
For i from 1 to n: For i from 1 to n:
If A; > max If A; > max
max =A,;. max =A;.
If A; < min Else if A; < min
min = A, min = A,
Output max and min. Output max and min.
Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 19/32

Algorithm complexity

* For the same task, using different algorithms may result in
completely different execution time!
* Consider the following example:

— For n? squares arranged into a big square, how many different routes, which
do not travel the same edge twice, do we have from the left-top corner to the
right-bottom corner?

[]

¢ Let’s watch the video!

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 20/32




Algorithm complexity

* The issues of algorithm complexity and efficiency lie at the heart
of Computer Science.
— Will be discussed extensively in Discrete Mathematics, Algorithms, and
Theory of Computation.
* At this time, all we need to know is that “among all algorithms,
some are better and some are worse.”

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 21/32

Outline

* Algorithms
* Combinatorial problems
* The knapsack problem

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 22/32

The knapsack problem

* The knapsack problem is one of the most fundamental problems
in Computer Science.

* Itis a problem that is “easy to describe but hard to solve.”

* The problem:

— We are given a knapsack (backpack) and a set of items.

These items have various weights and values.
We want to select some items to maximize the total value.

But the total weight cannot exceed the knapsack capacity.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 23/32

The knapsack problem

* Problem input:
— The weight of items: w, w,, ..., w,.
— The value of items: v, vy, ..., V,.

n

— The weight limit of the knapsack B.
¢ Problem formulation:

— Letx; =1 if item i is selected and O otherwise.

— The problem:
n
max Z VX,
i=1
n
s.t. Z wx; <B
i=1
x,€e{01}Vi=1,..,n.
Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 24/32




A greedy algorithm

* How to solve the knapsack problem?
* Let’s consider the following greedy algorithm:

— For each unselected item that can be select (selecting it does not exceed the
knapsack capacity), select the one which has the largest v; / w; ratio.

— Keep doing so until we can select no more item.
* Will the optimal solution be found for the following instance?
— Khnapsack capacity: B = 6.

— 4 items:

Wi

(NS NS
N W

3
4
4

AN W | B

Vi

* Any idea to modify this algorithm?

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 25/32

NP-hardness

* Amazingly, no one knows how to solve this problem efficiently!
* It has been shown that the knapsack problem belongs to the class
of “NP-hard” problems.
— No one has found a method that is better than complete enumeration.
— Most people believe a polynomial-time algorithm does not exist.
* Even the following simplification is NP-hard:

— Given some items with various weights and a knapsack with a fixed
capacity, is there a way of selecting a subset of items to exactly fill the
knapsack?

— Note that this is a decision problem.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Algorithms 26/32

NP-hardness

* So what should we do if we really need a solution?
* Fortunately, the knapsack problem is weakly NP-hard:

— There exists pseudo-polynomial algorithms.
— We will introduce an algorithm based on dynamic programming.
— The algorithm requires selection, repetition, and matrices.

* Given a capacity B and a set of items with weights w,, w,, ..., w,:
— We want to determine whether there is a set such that items in that set

together weigh exactly B.
— If so, we want to determine which items should be selected.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 27/32

The dynamic programming algorithm

e Letw=(w;, w,, ..., w,) be the weight vector and B be the capacity.
* Let P(B, n) be the problem of capacity B and weights w,, ..., w,.
* For the problem with w = (2, 3,4, 5) and B = 6:
— P(6,4) is our original problem.
— P(6, 3) is to fill a knapsack of capacity 6 with w = (2, 3, 4).
— P(5, 3) is to fill a knapsack of capacity 5 with w = (2, 3, 4).
» The answer of P(B, n) has three possibilities:
— P(B, n) = IMP if these n items cannot fill the knapsack.
— P(B, n) = NS if they can fill the knapsack by not selecting item n.
— P(B, n) =S if they can fill the knapsack by selecting item 7.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Algorithms 28/32




The dynamic programming algorithm

* Example: w=(2,3,4,5) and B =6.
* A problem can be solved by solving “smaller” problems:
— Suppose we know P(6, 3) = NS or S, then we know P(6, 4) = NS.
— Suppose we know P(1, 3) = NS or S, then we know P(6, 4) = S.
— Suppose we know P(6, 3) = P(1, 3) = IMP, does P(6, 4) = IMP?
* And also problems with only 1 item is easy:
— P(0,1)=NS, P(2,1)=S, P(B, 1) =IMP for all B that are not 0 or 2.
* So we may do an iterative bottom-up solution process:
— First problems with only 1 item.
— Then 2 items.
— And so on.

Ling-Chieh Kung
Programming Design , Spring 2013 - Algorithms

NTU M
29/32

The dynamic programming algorithm

* Solving this problem with a matrix:

w; /B 0 1 2 3 4 5 6
2 NS IMP IMP IMP IMP IMP
3 NS IMP S IMP S IMP
4 NS IMP NS NS S NS
5 NS IMP NS NS NS SorNS

* The last cell is what we want. The answer is “Yes, we may fill a
knapsack of capacity 6 with the four items.”

¢ How to determine the items to be selected?

Ling-Chieh Kung
Programming Design , Spring 2013 - Algorithms

NTU IM
30/32

Implementation

* How to implement this algorithm?
* Prepare a two-dimensional array.
— Each element records the answer of that subproblem.
* Find the values of the array by a two-level loop.
— The outer loop checks 1 item, 2 items, ..., and # items.
— The inner loop checks capacity 0, 1, 2, ..., and B.
* For each subproblem:
— If condition 1 is true, write S into this element.
— If condition 2 is true, write NS into this element.
— Otherwise, write IMP.
* What if both conditions are true?

Ling-Chieh Kung
Programming Design , Spring 2013 - Algorithms

NTU IM
31/32

Efficiency

* Is this algorithm efficient?
* Typically yes, but no if the knapsack capacity is really large...

Ling-Chieh Kung
Programming Design , Spring 2013 - Algorithms

NTU IM
32/32




