IM 1003: Computer Programming
Functions and Randomization

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 1/54

Outline

¢ Basics of functions

* More about functions
— Function overloading
— Default function arguments
— Inline functions

e Variable lifetime

¢ Randomization

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 — Functions and Randomization 2/54

Why functions?

* In C++ and most modern programming languages, we may put
statements into functions that are to be called in the future.
— Also known as procedures in some languages.
* Why functions?
* We need modules instead of a huge main function.
— Easier to divide the works.
— Easier to debug.
— Easier to maintain consistency.
* We need something that can be used repeatedly.
— Enhance reusability.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 — Functions and Randomization 3/54

Structure of functions

* In C++, a function is composed of a header and a body.

¢ A Header for declaration:
— A function name.

— Alist of input parameters. Input parameters

— Areturn value. @

* Abody for definition:
— Statements that define the task.

Function

4

A returned value

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 — Functions and Randomization 4754

Function declaration

* To implement a function, we first declare its prototype:

return type function name (parameter types);

* Some examples:
— int add(int numl, int num2);
— int add(int, int);
— double divide (double, double);
double divide (double numerator, double denominator);

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 5/54

Function declaration

* In a function prototype, we declare its appearance and behavior.
* A function name:
— The name of the function.
— The naming rule is the same as variable naming.
* Alist of parameters:
— The parameters passed into the function with their types.
— We must declare their types. Declaring their names are optional.
— There can be any number of parameters. It can also be zero.
* Areturn value:
— The type of the function return value.
— There can only be one return value.

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 — Functions and Randomization 6/54

Function declaration

* int add(int numl, int num2);

— A function receives two integers and returns an integer.

— The parameter names may provide “hints” to what this function does.
* double divide (double, double);

— A function receives two double-precision real numbers and returns a double-
precision real number.

* For a function declaration, the semicolon is required.

* The return type:

— Every type can be the return type.
— Or it may be “void’: return nothing.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 — Functions and Randomization 7154

Using a function

* Declare the function before using it.
— Typically after the preprocessors and before the main function.

* Then we need to define the function by writing the function body.
— Typically after the main function, though not required.

* Recall that in a function prototype, we do not need to specify

parameter names.

¢ But in a function definition, we need!

— Otherwise, we will not know how to use them in the function.

* These parameters can be viewed as variables declared inside the
function. They can be accessed only in the function.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 — Functions and Randomization 8/54

Function definition

¢ You have written one function: the main function.

* Defining other functions can be done in the same way.

return type function name (parameters)

{

statements

— The first line, the function header, is almost identical to the prototype.

— However, the parameter names must be specified.

* Let’s see one example:

Ling-Chieh Kung

Programming Design , Spring 2013 — Functions and Randomization

NTU IM
9/54

Function definition

* The add () function:
int add (int numl, int num?2)
{
return numl + num2;
}
* Then in the main function we may call the add () function:
int main ()
{
int ¢ = add (10, 20);
cout << c << endl;
return O;
}

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 — Functions and Randomization 10/54

Function invocation

* When a function is invoked in the
main function, the program
execution jumps to the function.

* After the function execution is
complete, the program execution
jumps back to the main function,
exactly where the function is
called.

¢ What if another function is called
in a function?

Ling-Chieh Kung

Programming Design , Spring 2013 — Functions and Randomization

int add (int, int);

int main ()

{
int ¢ = add (10, 20);
cout << ¢ << endl;
return O;

}

int add (int numl, int num2)
{

return numl + num2;
}

NTU IM
11/54

Function definition

* You may define a function before the main function.
* In this case, the function prototype can be omitted.

int add (int, int); int add (int numl, int num2)
int main () { return numl + num2;

{ }
int ¢ = add(10, 20);

cout << c << endl; int main ()

return 0; {

} int ¢ = add(10, 20);
cout << c << endl;

int add (int numl, int num2) return O;

{ }
return numl + num2;
}

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 — Functions and Randomization 12/54

Function parameters vs. arguments

* When we invoke a function, we need to provide arguments.
— Parameters: variables used inside the function.
— Arguments: values passed into the function.
* If an argument’s type is different from the corresponding
parameter’s type, compiler will try to cast it.

int add (int numl, int num2) double add (double numl, double num2)

{ {
return numl + num2; return numl + num2;
} }
int main () int main ()
{ {
double ¢ = add(10.5, 20.7); // ! int ¢ = add(10, 20); // Ok~
cout << c << endl; cout << ¢ << endl;
return 0; return O;
} }
Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 13/54

Function arguments

* Function arguments can be: int main ()
— Literals. {
— Variables. sz i £ B

int d = 1;
cout << add (10, 20);
cout << add(C, d);
* An exception is that arguments cout << add(10 + C, 20);
for a call-by-reference parameter mEET (0
can only be variables. }

— This will be discussed later.

Constant variables.
— Expressions.

int add (int numl, int num2)
{

return numl + num2;
}

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 — Functions and Randomization 14754

Function return value

* We can return one or no value back to the place we invoke the
function.

¢ Use the return statement to return a value.

* If you do not want to return anything, declare the function return
type as void.
— In this case, the return statement can be omitted.

— Otherwise, having no return statement results in a compilation error.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 — Functions and Randomization 15/54

Function return value

* There can be as many return statements as you wish.

¢ A function runs until the first return statement is encountered.
— Or the end of the function for a function returning void

int max (int a, int b)
{
if(a > b)
return a; // first return
else
return b; // second return

}

* We need to ensure that at least one return will be executed!
— Example “06_01_return”.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 — Functions and Randomization 16 /54

Example

* How to write a function that int factorial (int n)

returns n! (the factorial of n)? { . ..
int ans = 1;
for (int a = 1; a <= n; at++)
ans *= a; // ans = ans * a;
return ans;
}

¢ How to write a function that void factorial (int n)

prints out n! (the factorial of {
n)? int ans = 1;
for (int a = 1; a <= n; at++)
ans *= a; // ans = ans * a;
cout << ans;
}
Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 17/54

Function invocation

¢ For a function that has no return value, invocation must be

function name (parameters);

* If a function has a return value, we may use either

variable = function name (parameters) ;

or

function name (parameters);

— In the latter case, the return value will be dropped.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 18754

An example

int add (int, int); int add(int numl, int num2)
void print (int); {
return numl + num2;
int main() }
{
int a = 10, b = 20; void print (int toPrint)
int ¢ = add(a, b); // c becomes 30 {
print(c); // c will be printed out cout << toPrint;
add(a, c); // nothing will happen }
int d = print(c); // compilation error
return 0;
}
Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 19/54

Good programming style

* Name a function so that its purpose is clear.
* In a function, name a parameter so that its purpose is clear.
* Declare all functions with suitable comments.

— Ideally, other programmers can understand what a function does without
reading the definition.
* Declare all functions at the beginning of the program.
— A function must be declared or defined before it can be invoked.

— Declaring all functions at the beginning removes the possibility of invoking
a function that has not be declared or defined.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 20/54

Outline

* Basics of functions

* More about functions
— Call-by-value mechanism
— Function overloading
— Default function arguments
— Inline functions

Variable lifetime
¢ Randomization

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 21/54

Call-by-value mechanism

* Consider example void swap (int x, int y);

“06_02_swap”. int main()
{
* Is the result strange?

int a = 10, b = 20;
cout << a << " " << b << endl;
swap(a, b);
cout << a << " " << b << end]l;
}
void swap (int x, int y)
{
int temp = x;
X =y;
y = temp;
}

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 — Functions and Randomization 22/54

Call-by-value mechanism

* The default way of invoking a function with parameters is the
“call-by-value” mechanism.
* When the function swap () is invoked:
— First two new variables x and y are created. Memory spaces are allocated.
— The values contained in a and b are copied and assigned to x and y.

The function starts and the values of x and y are swapped.

The function ends, x and y are destroyed, and memory spaces are released.

The execution goes back to the main function. Nothing really happened...

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 23/54

Why call-by-value?

The call-by-value mechanism is adopted so that:

— Functions can be written as independent entities that can use any variable
or parameter names.

— Modifying parameter values will not affect any other functions.
* These advantages makes work division easier.
* Program modularity can also be enhanced.
¢ In some situations, however, we do need a called function to
modify the values of some variables defined in the calling function.

— This can be done with the “call-by-reference” mechanism, which will be
discussed later.

— This may also happen when we pass an array to a function.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 24 /54

Constant parameters

* In many cases, we don’t even want a parameter to be modified
inside a function.

* For example, consider the factorial function:

int factorial (int n)
{
int ans = 1;
for (int a = 1; a <= n; at++)
ans *= a; // ans = ans * a;
return ans;

}
* For no reason the parameter n should be modified. You know this,

but how to prevent other programmer from doing so?

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 25/54

Constant parameters

* We may declare a parameter as a constant variable:

int factorial (const int n)
{
int ans = 1;
for (int a = 1; a <= n; at++)
ans *= a; // ans = ans * a;
return ans;

}

* Once we do so, if we assign any value to n, there will be a
compilation error.

* The argument passed into a constant parameter needs not to be a
constant variable.

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 — Functions and Randomization 26/54

Why function overloading?

* There is a function
— int pow (int base, int exp);
* Suppose we want to calculate x’ where y may be fractional:
— double powExpDouble (int base, double exp);
* What if we want more?
— double powBaseDouble (double base, int exp);
— double powBothDouble (double base, double exp);
* We may need a lot of powXXX () functions, each for a different
parameter set.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 27/54

Function overloading

* To make our lives easier, C++ provides function overloading.

* We can define many functions having the same name if their
parameters are not the same.

* So we don’t need to memorize a lot of function names.
— int pow (int, int);
— double pow (int, double);
— double pow (double, int);

double pow (double, double);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 — Functions and Randomization 28/54

Function signature

* Different functions must have different function signatures.
— This allows the computer to know which function is called.

* A function signature includes
— Function name.
— Function parameters (number of parameters and their types).

* Does not include return type! Why?

* When we define two functions with the same name, we say that
they are overloaded functions. They must have different
parameters:

— Numbers of parameters are different.
— Or at least one pair of corresponding parameters have different types.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 29/54

When to use function overloading?

* Almost all functions in the C++ standard library are overloaded, so
we can use them conveniently.

It can apply to our self-defined functions. But if you are not
familiar to it now, it doesn’t matter.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 30/54

An example

¢ Write two functions void print (char c, int num)

— void print (char c, {
int num); for (int i = 0; i < num; i++)
— void print (char c); cout << c;
}

that can print ¢ for num
times. If no numis

assigned, print a single c. void print (char c)
{
cout << c;
}
Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 31/54

Default arguments

* In the previous example, it is identical to assign num a default
value 1.

* In general, we may assign default values for some parameters in a
function.

* As an example, consider the following function that calculates a
circle area:
— double circleArea (double radius, double pi = 3.14);
— double circleArea (double, double = 3.14);

* When we call it, we may use circleArea (5.5, 3.1416),

which will assign 3.1416 to pi, or circleArea (5.5), which
uses 3.14 as pi.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 32/54

Default arguments

* Default arguments must be assigned before the function is called.
— In a function declaration or a function definition.

* You can have as many parameters using default values as you want.

* However, parameters with default values must be put behind (to
the right of) those without a default value.

* Once we use the default value of one argument, we need to use the
default values for all the following arguments.

* Function overloading is clearer though more time-consuming.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 33/54

Inline functions

¢ When we call a function, we need to do a lot of works.
— Allocating memory spaces for parameters.
— Copying and passing values as arguments.
— Record where we are in the calling function.
— Pass the program execution to the called function.
— After the function ends, destroy all the parameters and get back to the
calling function.
* When there are a lot of function invocations, the program will take
a lot of time doing the above stuffs. It then becomes slow.

 How to save some time?

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 — Functions and Randomization 34/54

Inline functions

* In C++ (and some other modern languages), we may define inline
functions.
* To do so, simply put the keyword inline in front of the function
name in a function prototype or header.
* When the compiler finds an inline function, it will replace the
invocation by the function statements.
— The function thus does not exist!
— Statements will be put in the calling function and executed directly.

* While this saves some time, it also expands the program size.

* In most cases, programmers do not use inline functions.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 35/54

Outline

¢ Basics of functions

* More about functions
— Function overloading
— Default function arguments
— Inline functions

* Variable lifetime

¢ Randomization

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 36/54

Variable lifetime

* There are four levels of variable lifetime (life scope) in C++ that

we are ready to understand.
— local, global, external, static.

* We’ll discuss more types of variables in the lectures for classes

and objects.

Local variables

e A variable declared in a block.
¢ It lives from the declaration to the end of block.
* In the block, it will hide other variables with same name.

int main()
{
int i = 50; // it will be hidden
for(int i = 0; i < 20; i++)
{
cout << i << " "; // print 01 2 .. 19

}
cout << i << endl; // ?
return O;

Ling-Chieh Kung

Programming Design , Spring 2013 — Functions and Randomization

NTU IM
38/54

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 37/54
Global variables
¢ A variable declared outside #include <iostream>
any block (thus outside the e
main function) int i = 5;
 Its lives from declaration to
the end of program execution. int main()
L . {
o it Wlll be hldden by any local for(; i < 20; i++)
variable with the same name. cout << i << " "; // 2
return 0;
}
Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 — Functions and Randomization

39/54

Global variables: Using *: :”

* To access a global variable, use the scope resolution operator :

#include <iostream>
using namespace std;

int i = 5;

int main ()
{
for(int 1 = 0; i < 20; i++)
cout << ::i <" ", // 5 ...5
return O;

}

Ling-Chieh Kung

Programming Design , Spring 2013 — Functions and Randomization

NTU IM
40/54

Local and global variables

* We may add auto to declare a local or global variable, but since it
is the default setting, almost no one adds this.

* There’s no difference in the way you declare a local or global
variable. The place differs.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 41/54

External variables

* In alarge-scale system, many programs run together.

* If a program wants to access a variable defined in another
program, it can declare the variable with the key word extern.

— extern int a;

— a must has been defined in another program.

* These programs must run together.

* You won’t need this now... maybe neither in the future.

Ling-Chieh Kung

Programming Design , Spring 2013 — Functions and Randomization

NTU IM
42/54

Static variables

* The memory space allocated to a static variable will not be
released until the program terminates.

¢ Once a static variable is declared, all other declaration statements
will not be executed.

* A static global variable cannot be declared as external in other

programs.
Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 43 /54

Static variables

int test();
int main ()
{
for (int a = 0; a < 10; a++)
cout << test() << " ";

return 0; // 1, 1, ..., 1
}
int test ()
{

int a = 0;

at+;

return a;

}

Ling-Chieh Kung

Programming Design , Spring 2013 — Functions and Randomization

int test();
int main()
{

for (int a =

0; a < 10; a++)

cout << test() << " ";

return 0; //
}
int test ()
{
static int a
at+;
return a;

}

i, 2y cooy WO

= 0;

NTU IM
44754

Summary and good programming style

* You have to distinguish local and global variables.
— Try to avoid global variables!
— One particular situation to use global variables is to define constants.
— Try to use local variables to replace global variables.
* You may not need static and external variables now or even in the
future.

* At least we need to know these things exist.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 451754

Outline

¢ Basics of functions

* More about functions
— Function overloading
— Default function arguments
— Inline functions

* Variable lifetime

* Randomization

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 46/ 54

Random Numbers

* In some situations, we need to generate random numbers.

— For example, a teacher may want to write a program to randomly draw one
student to answer a question.

— What are other applications of random numbers?
¢ In C++, randomization can be done with two functions, srand ()
and rand ().

* They are defined in <cstdlib>.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 47154

Random Numbers: rand ()

e int rand();
* It will return a pseudo-random integer between 0 and 32767.
* Example “06_03_random”:

int rn;
for (int i = 0; i < 10; i++)
{

rn = rand();

co.ut << rn << " ";

}

* What will happen if we execute it for multiple times?

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 48/54

Random Numbers: rand ()

* rand() returns a “pseudo-random” integer.
— They just look like random numbers. But they are not really random.
— There is a formula to produce each number.
—eg.,r=(@a*r.,+b)modc.

* You need to have a “random number seed”.

— 1, for this example.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 49/ 54

Random Numbers: srand ()

* void srand(unsigned int);

* It will produce a seed for the pseudo-random function.

srand (0) ;
int rn;
for (int 1 = 0; i < 10; i++)
{
rn = rand();
cout << rn << n ";

}

* Why still all the same?

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 — Functions and Randomization 50/54

Random Numbers: srand ()

* srand(x) will create a seed by input x into another complicated
function.

* Thus when you do srand (0), you still obtains the same sequence
for each execution.

* To solve this, try to give srand () different arguments.
* In most cases, we may use time (0) to be the argument of
srand().

— The function time (0), defined in <ctime>, returns the number of seconds
that have past since 0:0:0, Jan, 1st, 1970.

— The argument 0 cannot be explained now.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 — Functions and Randomization 51/54

Random Numbers: srand () and time ()

int rn; int rn;
srand (time (0)); for (int i = 0; i < 10; i++)
for (int 1 = 0; i < 10; i++) {
{ srand (time (0)) ;
rn = rand(); rn = rand();
cout << rn << " "; cout << rn << " ";
} // OR~ :> } // not ok... / \

* In a computer, do the for loop for 10 times requires a very short
time, and time () returns a count of seconds, thus all the
parameters of srand () are (almost always) the same.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 — Functions and Randomization 52/54

Random Numbers: In a Range

* If you want to produce random numbers in a specific range, use %.

srand (time (0)) ;

int rn;
for (int 1 = 0; i < 10; i++)
{
rn = ((rand() % 10)) + 100;
cout << rn << " ";

} // what is the range?

Ling-Chieh Kung NTU M

53/54

Programming Design , Spring 2013 — Functions and Randomization

An example

* Write a program to produce 10 random numbers, which are
rational numbers that uniformly distributed between 0 and 5.

srand (time (0)) ;

double rn;

for(int i = 0; i < 10; i++)

{
rn = (static_cast<double>(rand() % 501)) / 100;
cout << rn << " u;

} // 0 <=1 <=5

— Do not forget casting!

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 — Functions and Randomization 54/54

