
IM 1003: Computer Programming

Inheritance

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 1 / 35

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Outline

• Inheritance

– Basic ideas and the first example

– Constructors in child classes

– Function overriding

– Inheritance visibility

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 2 / 35

– Inheritance visibility

– Invoking constructors and destructors

Example

• Recall the class Car you created for the last homework.

• Rename it as Auto.

• Suppose we want to create a new class Minivan.

• A Minivan can do all the things that an Auto can do.

• Besides,

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 3 / 35

• Besides,

– A Minivan has four integer static attributes: regPer = 7, regCase = 5,

spePer = 4, speCase = 8.

– It also has one instance Boolean attributes isReg.

– A Minivan can do void flip() to flip isReg.

Example
class Auto

{

protected: // explained later

string plate;

int mpl;

int mileage;

int gas;

Auto::Auto(string plate, int mpl)

{

this->plate = plate; this->mpl = mpl;

this->mileage = 0; this->gas = 0;

}

void Auto::drive(int gasUsed)

{

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 4 / 35

int gas;

public:

Auto() { Auto("", 0); }

Auto(string plate, int mpl);

void drive(int gasUsed);

void refill(int gasAdded)

{

this->gas += gasAdded;

}

};

{

if(gasUsed >= this->gas) {

mileage += mpl * gas;

gas = 0;

}

else {

mileage += mpl * gasUsed;

gas -= gasUsed;

}

}

Example

class Minivan

{

private:

string plate;

int mpl;

int mileage;

public:

Minivan() { Minivan("", 0); }

Minivan(string plate, int mpl);

void drive(int gasUsed);

void refill(int gasAdded)

{

this->gas += gasAdded;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 5 / 35

int mileage;

int gas;

static int regPer;

static int regCase;

static int spePer;

static int speCase;

bool isReg;

this->gas += gasAdded;

}

void flip();

int getPer(); // later

int getCase(); // later

};

Example
Minivan::Minivan(string plate, int mpl)

{

this->plate = plate;

this->mpl = mpl;

this->mileage = 0;

this->gas = 0;

this->isReg = true;

void Minivan::drive(int gasUsed)

{

if(gasUsed >= this->gas) {

mileage += mpl * gas;

gas = 0;

}

else {

mileage += mpl * gasUsed;

gas -= gasUsed;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 6 / 35

this->isReg = true;

}

void Minivan::flip()

{

if(this->isReg == true)

this->isReg = false;

else

this->isReg = true;

}

gas -= gasUsed;

}

}

int Minivan::regPer = 7;

int Minivan::regCase = 5;

int Minivan::spePer = 4;

int Minivan::speCase = 8;

Example

• They are very similar!

• In fact, the definition of Minivan includes everything in the

definition of Auto.

• If we want to define a class for cars, trucks, SUVs, RVs, etc., we

will need to write those codes repeatedly.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 7 / 35

will need to write those codes repeatedly.

– A lot of meaningless work.

– Potential inconsistency.

Inheritance

• Since we have already completed the class Auto, it will be great if

we can reuse it.

• A minivan is an auto, so we may to create the class Minivan by

using the class Auto.

• The solution is inheritance.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 8 / 35

• The solution is inheritance.

Inheritance

• We can use inheritance to create new classes from existing classes.

– This saves a lot of work on coding.

– This creates a tighter connection among these classes.

– This enhances consistency.

• One sentence to describe inheritance:

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 9 / 35

• One sentence to describe inheritance:

– One class can inherit another class to “inherit”, i.e., obtain, its member

variables and member functions.

• The relation is like a parent and her child.

Inheritance

• When we can say that “XXX” is a “OOO”, then usually we can let

XXX inherit OOO.

– A “volleyball” is a “ball”.

– A “volleyball player” is a “person”.

– A “college volleyball player” is a “volleyball player”.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 10 / 35

– A “college volleyball player” is a “volleyball player”.

– A “triangle” is a “polyhedron”.

– A “van” is an “automobile”.

– An “economy car” is a “car”.

• If XXX inherits OOO, then:

– OOO is the super class or base class.

– XXX is the sub class or derived class.

• Then XXX will have OOO’s members.

Example: with inheritance
class Minivan : public Auto

{

private:

static int regPer;

static int regCase;

static int spePer;

static int speCase;

bool isReg;

Minivan::Minivan()
{

Minivan(plate, mgl);
this->isReg = true;

}

Minivan::Minivan
(string plate, int mpl)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 11 / 35

bool isReg;

public:

Minivan();

Minivan(string plate, int mpl);

void flip();

int getPer();

int getCase();

};

(string plate, int mpl)
{

this->plate = plate;
this->mpl = mpl;
this->mileage = 0;
this->gas = 0;
this->isReg = true;

}

Example: with inheritance

int Minivan::getPer()

{

if(this->isReg == true)

return Minivan::regPer;

else

return Minivan::spePer;

}

void Minivan::flip()

{

if(this->isReg == true)

this->isReg = false;

else

this->isReg = true;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 12 / 35

}

int Minivan::getCase()

{

if(this->isReg == true)

return Minivan::regCase;

else

return Minivan::speCase;

}

this->isReg = true;

}

int Minivan::regPer = 7;

int Minivan::regCase = 5;

int Minivan::spePer = 4;

int Minivan::speCase = 8;

Child class definition

• class child class : public parent class

{

// its own members

};

– The modifier “public” will be discussed later.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 13 / 35

– The modifier “public” will be discussed later.

• The child’s members = its own members + its parent’s own

members (+ its grandparent’s + …).

– After we let Minivan inherit Auto, it has attributes plate, mpl, mileage,

and gas.

– It can invoke refill(), drive(), etc.

Child class’ own members

• A derived class can define its own member variables and member

functions as well as before.

– Static variables: regPer, regCase, spePer, speCase.

– Instance variable: isReg.

– Instance function: flip(), getPer(), getCase().

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 14 / 35

– Instance function: flip(), getPer(), getCase().

• Of course, a parent cannot access its child’s members.

Main advantages of inheritance

• We do not need to define those common members for a child class

again. The codes can be much simpler.

• This also avoids inconsistency between a child and its parent.

• If someday we want to modify a parent class, we will not need to

do it again for a child class.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 15 / 35

do it again for a child class.

Outline

• Inheritance

– Basic ideas and the first example

– Constructors in child classes

– Function overriding

– Inheritance visibility

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 16 / 35

– Inheritance visibility

– Invoking constructors and destructors

Constructors in child classes

• A parent’s constructors will not be inherited by its children!

• However, when creating a child object, the system will invoke its

parent’s constructor before the child’s constructor.

• If the parent still has a parent, then the grandparent’s constructor

will be called first.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 17 / 35

will be called first.

• We may (and usually we should) indicate which constructor of the

parent to invoke. Otherwise, the system will invoke the parent’s

default constructor.

Constructors in child classes

• Suppose C inherits P.

• For a constructor of C:

C::C(parameters) : P(arguments for P's constructor)

{

// something to do for the child

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 18 / 35

• Use “:” to call the parent’s constructor, and use arguments to

indicate the one you want to call.

// something to do for the child

}

Constructors in child classes

• So we may implement an original constructor of Minivan by

invoking a constructor of Auto.

• How to rewrite the following constructor?

Minivan::Minivan(string plate, int mpl)

{

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 19 / 35

{

this->plate = plate;

this->mpl = mpl;

this->mileage = 0;

this->gas = 0;

this->isReg = true;

}

Constructors in child classes

• To specify a constructor of Auto, we write

• Then the following constructor of Auto

Minivan::Minivan(string plate, int mpl) : Auto(plate, mpl)

{

this->isReg = true;

}

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 20 / 35

• Then the following constructor of Auto

does its job before those remaining in the constructor of Minivan.

Auto::Auto(string plate, int mpl)

{

this->plate = plate;

this->mpl = mpl;

this->mileage = 0;

this->gas = 0;

}

Constructors in child classes

• Be careful to invoke the right constructor of the parent.

• Remember that if you do not indicate one, the default constructor

of the parent will be invoked.

• Write the default constructor by yourself when possible!

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 21 / 35

Outline

• Inheritance

– Basic ideas and the first example

– Constructors in child classes

– Function overriding

– Inheritance visibility

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 22 / 35

– Inheritance visibility

– Invoking constructors and destructors

Function overriding

• Let’s implement void Auto::print(); to print the four

attributes in one line.

void Auto::print()

{

cout << this->plate << " " << this->mpl << " "

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 23 / 35

cout << this->plate << " " << this->mpl << " "

<< this->mileage << " " << this->gas << endl;

}

Function overriding

• You may use a Minivan object to invoke print() since

Minivan is a child of Auto.

• However, the function print() is incomplete for Minivan:

Minivan m("ABCDEFG", 10);

m.print();

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 24 / 35

• However, the function print() is incomplete for Minivan:

– It does not print the current status according to isReg.

• We can define another function printMinivan() to do this.

• However, it will be more meaningful and convenient to use the

same name print().

– Some other benefits will become clear with polymorphism.

• May function overloading help in this case?

Function overriding

• The capability of function overloading is limited:

– The parameters must be different.

– So you can not have two print()s for Auto.

• The solution is “function overriding”.

– This functionality is specifically for classes with inheritance.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 25 / 35

– This functionality is specifically for classes with inheritance.

Function overriding

• We are allowed to define two instance functions with the same

signature (name and parameters) in two different classes.

– In particular, this is allowed for a parent and a child.

• Suppose a parent has a function f():

– Suppose the child does not have f(): When the child invokes f(), the

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 26 / 35

– Suppose the child does not have f(): When the child invokes f(), the

parent’s will be invoked.

– Suppose the child has its own f(): When the child invokes f(), the child’s

will be invoked by default.

• Then we say the child’s f() “overrides” the parent’s.

• In a child’s member function, we can still invoke the parent’s

member function with special indication.

Example: overriding print()

void Minivan::print() // overriding Auto::print()

{

Auto::print(); // invoking the parent's print()

// if no "Auto::", Minivan::print() will be called: recursion!

if(this->isReg == true)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 27 / 35

cout << "(" << this->regPer << ", "

<< this->regCase << ")" << endl;

else

cout << "(" << this->spePer << ", "

<< this->speCase << ")" << endl;

}

Exercise

• Suppose a minivan’s mileage per litter varies with its modes.

– In the regular mode, one litter of gas allows the minivan to run mplmiles.

– In the special mode, one litter of gas allows the minivan to run only
ceil(0.8 * mpl)miles.

• How would you override the function drive(int gasUsed) for

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 28 / 35

• How would you override the function drive(int gasUsed) for

Minivan?

Outline

• Inheritance

– Basic ideas and the first example

– Constructors in child classes

– Function overriding

– Inheritance visibility

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 29 / 35

– Inheritance visibility

– Invoking constructors and destructors

Inheritance visibility

• Let’s change the protectedmodifier in Auto to private.

• Then in,

void Minivan::refill(int gasAdded)

{

this->gas += gasAdded;

}

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 30 / 35

A compilation error will appear, saying that we try to access a

private member of Auto outside its class definition.

• Why inheritance fails?

}

Inheritance visibility

• A private member of the parent is not accessible by any one.

– Even its children.

– As a father, one may still choose to leave some properties to himself only.

• This is why we need the third visibility modifier: “protected”.

– Only public and protected members of a parent may be left to descendants.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 31 / 35

– Only public and protected members of a parent may be left to descendants.

– Therefore, those members that should be inherited by Minivan should be

protected instead of private in Auto.

• When a child is inheriting those left by its parent, it may modify

the visibility of these members starting from its generation.

– This is realized with different inheritance levels.

Inheritance visibility

• The way Minivan inherits Auto is a public inheritance.

– The visibility specified by the parents will all remain unchanged.

class Minivan : public Auto

{

// ...

};

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 32 / 35

• There are also protected inheritance and private inheritance.

– Protected inheritance: A member that is public in the parent class will

become protected starting from the child’s generation.

– Private inheritance: A member that is public or protected in the parent class

will become private starting from the child’s generation.

};

Inheritance visibility

• Table of levels of inheritance:

member

visibility

level of inheritance

public protected private

public public protected private

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 33 / 35

– Visibility will only be narrowed.

– Use public inheritance if you have no idea.

public public protected private

protected protected protected private

private private private private

Outline

• Inheritance

– Basic ideas and the first example

– Constructors in child classes

– Function overriding

– Inheritance visibility

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 34 / 35

– Inheritance visibility

– Invoking constructors and destructors

Exercise

• Write a problem with three classes: G, P, and C.

• Let C inherit P and P inherit G.

• Create constructors for the three classes with some outputs inside

them so that you may see these constructors are invoked.

• Create an object of class C and see the constructors of G and P are

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance 35 / 35

• Create an object of class C and see the constructors of G and P are

really invoked.

• Create destructors for the three classes with some outputs inside

them so that you may see these destructors are invoked.

• What is the sequence of invoking destructors?

