Ling-Chieh Kung

Programming Design , Spring 2013 - Inheritance and Polymorphism

IM 1003: Computer Programming
Polymorphism

Ling-Chieh Kung

Department of Information Management

National Taiwan University

NTU IM
1/26
L3
Parent and child classes
. class Mini: 8 lic Aut
» We have defined two classes: (LSS 6 Rt L
private:
s Auto static int regPer;
{ static int regCase;
protected: stat:f.c :.Int]t spePer;
string plate; :|.<:: E !
int mol: bool isReg;
- public:
int mileage; // ...
int gas; };
public:
/...
Y;
Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Inheritance and Polymorphism 3/26

Outline

* Polymorphism
— Preparation

— Basic ideas and the first example
— Virtual functions

Ling-Chieh Kung

NTU IM
Programming Design , Spring 2013 - Inheritance and Polymorphism

2/26

Parent and child classes

* Suppose we have defined a member function hasHigherMpl () in

Auto, which compares a given Auto’s mpl with that of the Auto
invoking this function.

bool Auto: :hasHigherMpl (Auto a)
{

if (this->mpl > a.mpl)
return true;

else
return false;

Ling-Chieh Kung

NTU IM
Programming Design , Spring 2013 - Inheritance and Polymorphism 4726

Parent and child classes

. id Auto: :print
« We have also defined ~ Yod to: Print()

{
a member function cout << this—>plate << " " << this—>mpl << " "
print () in Auto and

<< this—>mileage << " " << this—>gas;
then overrode it in

Minivan.

-

void Minivan: :print ()
{

¢ We will use these Auto: :print () ;

functions to illustrate ?‘;‘::g‘ > -
. i s—>i == true
the idea of cout << ??fg« this->regPer << ", "
polymorphism. << this->regCase << ")";
else
cout << "(" << this—>spePer << ", "
<< this->speCase << ")";
}
Ling-Chich Kung NTUIM
Programming Design , Spring 2013 - Inheritance and Polymorphism 5/26

Outline

* Polymorphism

— Preparation

— Basic ideas and the first example

— Virtual functions

Ling-Chieh Kung

Programming Design , Spring 2013 - Inheritance and Polymorphism

NTU IM
6/26

Comparisons among different classes

* Consider the hasHigherMpl () function of Auto. This allows us
to compare an Auto with another Auto.

Auto al("carl", 10);
Auto a2("car2", 12);
cout << al.hasHigherMpl(a2); // 0 or 1?
* What if we want to compare an Auto with a Minivan?

* We “may” use function overloading.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Inheritance and Polymorphism 7126

Comparisons among different classes

* With function overloading, we

may define another
hasHigherMpl () whose
parameter is a Minivan.

e If there is another class Truck,

we may define one more.

* Two things are bad:
— All these hasHigherMpl () are
almost identical.
— Whenever we create one more

type of auto, we need to modify
the parent class Auto.

Ling-Chieh Kung
Programming Design , Spring 2013 - Inheritance and Polymorphism

bool Auto: :hasHigherMpl (Auto a)
{
if (this—>mpl > a.mpl)
return true;
else
return false;
}

bool Auto: :hasHigherMpl (Minivan m)
{
if (this->mpl > m.mpl)
return true;
else
return false;

NTU IM
8/26

Comparisons among different classes

* We want to compare:
— An Auto with an Auto
— An Auto with a Minivan
— AMinivan with an Auto
— AMinivan with a Minivan.
* “It seems that” we need
— Two overloaded instance functions in Auto.
— Two overloaded instance functions in Minivan.
* With a parent class Auto and # child classes, “it seems that” we
need (n + 1)? almost identical instance functions!

* Does inheritance help?

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 - Inheritance and Polymorphism

9/26

Comparisons among different classes

* Fortunately, inheritance allows us to define only n + 1 functions in
the parent class Auto.

— Then all child classes inherit these functions.
* But the two drawbacks are still there:

— We still need n + 1 almost identical hasHigherMpl ().
— When we create a child class, we need to modify the parent class Auto.

¢ Can we do better?

Store different types of autos

* Suppose in a program, there are all kinds of autos: sedans, trucks,
minivans, etc.
* We want to store all these autos in arrays.
— In C++, all elements in an array must have the same type.
— Do we need to prepare one separate array for each type of autos?
— May we store all of them in one single array?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism

11/26

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Inheritance and Polymorphism 10/26
[J
Polymorphism
* The three principles of OOP are
— Encapsulation
— Inheritance
— Polymorphism

* Polymorphism: a lot of appearances.
— One thing can behave differently in different situations.
* It requires inheritance.
— It can be applied only on ancestor-descendent relationships.
It is the most difficult to understand.
* However, it can be very useful and powerful.

— At least it will help us solve the two problems we just mentioned.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Inheritance and Polymorphism 12/26

Variables vs. values

» To apply it, first we need to differentiate a variable’s type and a
value’s type.

— A variable can store values and must have a type. E.g., a double variable is
a container which “should” store a double value.

— A value is the thing that is stored in a variable (put into a container). E.g.,
12.50r 7.

— Note that the value has its own type, which may be different from the
variable/container’s type.

* In C++, the way we implement polymorphism is to
“Use a variable of a parent type to
store a value of a child type.”

Polymorphism

* Suppose we have the following two classes:

class A // A is B's parent
{
public:

void £() { cout << "AAA!\n"; }
}i
class B : public A // B is A's child
{
public:
void £() { cout << "EBB!\n"; }
};
* Then we can write... .

B b;

* Though this is allowed, what is a? A a = b;

— Itis an A object or a B object?

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Inheritance and Polymorphism 13726
Polymorphism

* Similarly, we may write

Minivan m;
Auto a = m;

— Isaan Auto or aMinivan?

* This is exactly “using a variable of a parent type to store a value of
a child type”.
* Let’s go back to our example with classes A and B.

* What will happen if we invoke £ (), the overridden function?

— ier: 9 .
Easier: How aboutb. £ () ? B b;
— Harder: How about a.£()? A a=b;
Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Inheritance and Polymorphism 15/26

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Inheritance and Polymorphism 14726
Polymorphism
int main()
{
B b;
A a=Db;

b.£(); // BBB!
a.f£(); // Rra!
return O;

}

* No matter what is the type of the value a contains, because a’s
typeisA a.£() will callA: : £().
» Itis because at the time of compilation, the compiler does not
know what value a will contain when a. £ () is executed.
— a.f() is bound with the container a’s type A This is called “early binding”.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Inheritance and Polymorphism 16/26

How polymorphism helps

* Thanks to polymorphism, because Minivan inherits Auto, an
Auto variable can store a Minivan value.

* Thus, the following program is valid:

Auto anAuto;

Minivan aMinivan;

Auto who;

who = anAuto; // no error
who.print () ;

who = aMinivan; // no error
who.print () ;

Ling-Chieh Kung NTU M

Programming Design , Spring 2013 - Inheritance and Polymorphism

17/26

How polymorphism helps

* Therefore, we can simply define one single function
hasHigherMpl (Auto a) in Auto.

* The parameter’s type is Auto. Because Minivan is a child of
Auto, a can store the value of an Auto or a Minivan.

Auto al("carl", 10);

Minivan m("minivanl", 9);

Auto a2("car2", 12);
al.hasHigherMpl (a2); // no error
al.hasHigherMpl (m); // no error

* So only one definition of hasHigherMpl () is enough!

Ling-Chieh Kung

Programming Design , Spring 2013 - Inheritance and Polymorphism

NTU IM
18/26

Polymorphism

* The most frequently used applications of polymorphism are
— In a function parameter.
— In an array.
* We can have an array of Auto to store Minivan, Sedan, Truck,
etc., without multiple separated arrays.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism

19/26

Outline

* Polymorphism
— Preparation
— Basic ideas and the first example
— Virtual functions

Ling-Chieh Kung
Programming Design , Spring 2013 - Inheritance and Polymorphism

NTU IM
20/26

How to invoke the right function?

* Consider the next example:

Auto a("carl", 10);
Minivan m("minivanl", 9);

Auto who[2];
who[0] = a;
who[l] = m;

who[0] .print(); // four attributes
who[1] .print (); // still four attributes orz

* a can only invoke Auto: :print (), since the rule of

polymorphism is to invoke the overridden function according to
the type of the container, not the type of the value.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Inheritance and Polymorphism 21/26

Virtual functions

* The solution is to use “virtual functions” to do “late binding”.

— A virtual function is still an instance function.
— However, it implements late binding.

 If a virtual function is overridden, it will be invoked according to
the value’s type, not the container’s type.

* Declaring a virtual function:

class Auto
{
// ...
virtual void print(); // virtual function
}i
— We do not need to declare virtual in child classes. However, doing so makes
the program clearer.

Ling-Chieh Kung NTU M
Programming Design , Spring 2013 - Inheritance and Polymorphism 22/26

Virtual functions

* To implement late binding, we need to do one more thing: Using
pointers instead of “real objects”.
* When we write Auto a;, the compiler creates a real Auto object.
— It allocates a memory space for the four instance variables.
* No matter what value is assigned to a, a is still an Auto object.
— In particular, if a Minivan is assigned to a, isReg will be discarded.
— It is thus impossible to print out anything regarding isReg.
* However, when we write Auto* a;, the compiler only creates an
Auto pointer.
— It can point to an Auto, a Minivan, or any descendent of Auto.

* Therefore, we will use a pointer to “mimic” an object.

Ling-Chieh Kung NTU IM
Programming Design , Spring 2013 - Inheritance and Polymorphism 23/26

Virtual functions

* A parent pointer can point to a child object.

* The compiler will determine the function to invoke during the
running time (late binding).

Auto a("carl", 10); Auto* who = NULL;
Minivan m("minivanl", 9); who = new Auto("carl", 10);
Auto* who; who—>print (); // four attributes
who = &a; delete who;
who—>print (); // four attributes who = new Minivan ("minivanl", 9);
who = &m; who—>print (); // six attributes
who—>print(); // six attributes delete who;
Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Inheritance and Polymorphism 24 /26

Example Summary

* Why in the following ‘(’°i" print (Auto autos[], int n) * It is a technique to make our program clearer, more flexible and
program, still only four for(int i = 0; i < 2 /i++) more powerful.
. . utos[i] .print () ; £ ttribut)
attributes are printed out , ° osti -print(o e — Itis based on inheritance.
for Minivan values? int main() — It is tightly related to function overriding, late binding, and virtual
* How to modify it? o a (ra", 10); functions.
— You also need to use Minivan ml("ml", 8), m2("m2", 9); » The key action is to “use a variable/container of a parent type to
. . Auto autos[3]; // early binding . 9
pointers as function antos[0] o a; astosfl] = ml; mstos[2] = m2; store a value of a child type”.
firag,lege_rs to implement EI To implement late binding, you need to
ate binding. 0

— Declare virtual functions and

— Use parent pointers to point to child objects.

Ling-Chieh Kung NTU IM Ling-Chieh Kung

NTU IM
Programming Design , Spring 2013 - Inheritance and Polymorphism 25/26

Programming Design , Spring 2013 - Inheritance and Polymorphism 26/26

