
IM 1003: Computer Programming

Data Structures

Ling-Chieh Kung

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 1 / 46

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Outline

• Basic ideas

• Lists: class JobList

• Linked lists: JobLinkedList

• More data structures

• Topics not covered in this semester

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 2 / 46

• Topics not covered in this semester

Data structures

• A data structure is a specific way to store data.

• Usually it also provides interfaces for people to access data.

• Real-life examples: A dictionary.

– It stores words.

– It sorts words alphabetically.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 3 / 46

– It sorts words alphabetically.

Data structures

• In large-scale software systems, there are a lot of data. We want to

create data structures to store and manage them.

• We want our data structures to be safe:

– People can access data only through managed interfaces.

– Think about encapsulation!

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 4 / 46

– Think about encapsulation!

• We need them to be effective:

– We can store and access data correctly.

• We also want them to be efficient:

– Operations can be done in a short time.

– Consider a dictionary with words not sorted!

Data structures

• An array is a very simple data structure.

• Is it safe, effective, and efficient?

– Safety: Only if suitable interfaces are provided.

– Effectiveness: Only if suitable interfaces are provided.

– Efficiency: To be discussed later.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 5 / 46

– Efficiency: To be discussed later.

• Therefore, our first attempt will be to build a “more complicated”

data structure based on an array.

Outline

• Basic ideas

• Lists: class JobList

• Linked lists: JobLinkedList

• More data structures

• Topics not covered in this semester

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 6 / 46

• Topics not covered in this semester

Lists

• A list is a linear data structure. It stores items in a line.

– E.g., a dictionary, a contact list, a personal schedule, etc.

• As an example, we will implement a job list, which stores jobs.

• The class JobListwill use an array to store jobs.

– Jobs with a smaller index has higher priority.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 7 / 46

– Jobs with a smaller index has higher priority.

• More importantly, it will provide interfaces to access those jobs.

– The array will be a private or protected member variable.

– The interfaces will be public member functions.

Job
class Job

{ // nothing special

private:

string name;

int hour;

public:

Job() { this->name = ""; this->hour = 0; }

Job(string name, int hour)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 8 / 46

Job(string name, int hour)

{ this->name = name; this->hour = hour; }

void setHour(int hour) { this->hour = hour; }

string getName() { return this->name; }

double getHour() { return this->hour; }

void print() {

cout << "(" << this->name

<< ", " << this->hour << ")";

}

};

JobList

const int MAX_JOBS = 100; // a global variable

class JobList

{

private:

Job jobs[MAX_JOBS]; // where we store the data

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 9 / 46

int count; // other attributes

public:

JobList() { this->count = 0; }

// interfaces

int getCount() { return this->count; }

bool insert(Job job, int index);

Job remove(int index);

void print();

};

JobList::print()

void JobList::print()

{

for(int i = 0; i < this->count; i++)

{

cout << "Job " << i + 1 << ": ";

this->jobs[i].print();

cout << endl;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 10 / 46

cout << endl;

}

}

JobList::insert()

bool JobList::insert(Job job, int index)

{

if(index < 0 || this->count == MAX_JOBS)

return false; // fail to insert

else if(index > this->count) // insert at the end

this->jobs[this->count] = job;

else // usual insertion

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 11 / 46

else // usual insertion

{

for(int i = this->count - 1; i >= index; i--)

this->jobs[i+1] = this->jobs[i];

this->jobs[index] = job;

}

this->count++;

return true;

}

JobList::remove()

Job JobList::remove(int index)

{

Job toRemove; // to be removed and returned

if(index < 0 || this->count == 0)

return toRemove; // nothing to remove

else if(index > this->count) // remove the last one

toRemove = this->jobs[this->count];

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 12 / 46

toRemove = this->jobs[this->count];

else // usual removal

{

toRemove = this->jobs[index];

for(int i = index; i < this->count - 1; i++)

this->jobs[i] = this->jobs[i+1];

}

this->count--; // the effective action of removal

return toRemove;

}

Remarks

• Is JobList safe, effective, and efficient?

– Safety: People can access these data only through public interfaces.

– Effectiveness: We have implemented fail-safe interfaces.

– Efficiency: Not so efficient! Insertion and removal may need to move all

jobs (i.e., O(n)).

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 13 / 46

• Drawbacks:

– There is a limit on the total number of jobs.

– A lot of storage spaces are wasted.

• These drawbacks exist for almost every data structure

implemented with arrays, even with dynamic memory allocation.

• We will introduce another “list” that does not use an array.

Outline

• Basic ideas

• Lists: class JobList

• Linked lists: JobLinkedList

• More data structures

• Topics not covered in this semester

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 14 / 46

• Topics not covered in this semester

Linked lists

• A linked list is a list implemented by using pointers so that “each

element has a pointer pointing to the next element”.

• Advantages:

– No limit on the number of elements stored.

– Dynamically allocate memory spaces. Can save spaces.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 15 / 46

– Dynamically allocate memory spaces. Can save spaces.

– Efficiency may be improved (in some cases).

• Disadvantages:

– Harder to implement.

– Efficiency may be worsen (in some cases).

Job

class Job

{

friend class JobLinkedList; // discussed later

private:

string name;

int hour;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 16 / 46

Job* next; // the pointer pointing to the next job

public:

Job()

{

this->name = "";

this->hour = 0;

this->next = NULL;

// has the next job only if put in a list

}

// (continue to the next slide)

Job

// (continue from the previous slide)

Job(string name, int hour)

{

this->name = name;

this->hour = hour;

this->next = NULL;

}

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 17 / 46

}

void setHour(int hour) { this->hour = hour; }

string getName() { return this->name; }

double getHour() { return this->hour; }

void print();

{

cout << "(" << this->name

<< ", " << this->hour << ")";

}

};

JobLinkedList
class JobLinkedList

{

protected:

int count;

Job* head; // pointing to the first Job

public:

JobLinkedList() {

this->count = 0;

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 18 / 46

this->count = 0;

this->head = NULL;

}

~JobLinkedList(); // for dynamically-allocated space

// same interfaces

int getCount() { return this->count; }

bool insert(Job job, int index);

Job remove(int index);

void print();

};

JobLinkedList::print()

void JobLinkedList::print()

{

Job* temp = this->head;

for(int i = 0; i < this->count; i++)

{

cout << "Job " << i + 1 << ": ";

temp->print();

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 19 / 46

temp->print();

cout << endl;

temp = temp->next; // move to the next job

}

}

JobLinkedList::insert()

bool JobLinkedList::insert(Job job, int index)

{

Job* toInsert = new Job(job.name, job.hour);

if(index < 0) // fail-safe

return false;

else if(index == 0) // insert it as the head

{

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 20 / 46

{

if(this->count > 0)

toInsert->next = this->head;

this->head = toInsert;

}

// (continue to the next slide)

JobLinkedList::insert()

// (continue from the previous slide)

else // insert it somewhere in the list

{

if(index > this->count) // fail-safe

index = this->count;

Job* temp = this->head; // find the place

for(int i = 0; i < index - 1; i++)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 21 / 46

for(int i = 0; i < index - 1; i++)

temp = temp->next;

toInsert->next = temp->next; // insertion

temp->next = toInsert;

}

this->count++;

return true;

}

JobLinkedList::remove()

Job JobLinkedList::remove(int index)

{

Job toRemove;

if(index < 0 || this->count == 0)

return toRemove; // return an empty job

else if(index <= 1)

{

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 22 / 46

{

toRemove = *(this->head); // return the head

Job* temp = this->head; // removal

this->head = temp->next;

delete temp;

}

// (continue to the next slide)

JobLinkedList::remove()

// (continue from the previous slide)

else

{

Job* temp = head; // find the place

for(int i = 0; i < index - 2; i++)

temp = temp->next;

Job* tempNext = temp->next; // removal

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 23 / 46

Job* tempNext = temp->next; // removal

temp->next = tempNext->next;

toRemove = *tempNext; // return the removed one

delete tempNext;

}

this->count--;

toRemove.next = NULL;

return toRemove;

}

Common errors

• If a Job pointer job is NULL, then accessing job->next

generates a run-time error.

• Forgetting to set next to NULLmay also create run-time errors.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 24 / 46

Remarks

• In general, a list is a linear data structure. It stores multiple

“nodes”, which is another elementary data structure.

• When an A “has a” B, usually we make A as B’s friend.

– A job linked list has a job.

• In a linked list, each node contains a pointer for the next node.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 25 / 46

• In a linked list, each node contains a pointer for the next node.

• For our JobLinkedList:

– There is no limit on the number of nodes stored.

– Spaces are saved by using dynamic memory allocation.

– Efficiency is roughly the same as JobList: Insertion and removal are O(n).

Encapsulation

• We implemented two lists:

– JobList: using an array.

– JobLinkedList: using pointers.

• Though the private storages are different, the public interfaces are

identical!

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 26 / 46

identical!

– One uses these two classes in the same way.

– Except for JobList there is a limit on the number of jobs.

JobLinkedList();

int getCount();

bool insert(Job job, int index);

Job remove(int index);

void print();

Encapsulation

• One does not need to (also should not) know the list is created.

• One should just know how to use it.

• What if I can see and access the array in JobList?

– I may write codes to access the array directly: The data structure is not safe.

– In the future if the implementation of JobList is modified, I may also need

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 27 / 46

– In the future if the implementation of JobList is modified, I may also need

to modify my codes even if the interfaces all remain the same.

Destructors

• If dynamic memory allocation is implemented, we need to release

those dynamically-allocated spaces by the delete statement.

• Consider the following main function in the next slide.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 28 / 46

Linked lists: Destructors

int main()

{

JobLinkedList jll;

Job j1("j1", 1), j2("j2", 2), j3("j3", 3);

// memory spaces are allocated statically

jll.insert(j1);

jll.insert(j2);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 29 / 46

jll.insert(j2);

jll.insert(j3);

// 3 new statements are executed

return 0;

} // no delete statement is executed!

// a destructor is useful in this case

JobLinkedList::~JobLinkedList()

JobLinkedList::~JobLinkedList() // version 1

{

Job* temp = this->head;

Job* tempNext = NULL;

// Do not write "Job* tempNext = this->head->next;“

// If we do so, what happens on an empty list?

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 30 / 46

for(int i = 0; i < this->count; i++)

{

tempNext = temp->next;

delete temp; // release memory

temp = tempNext;

}

}

JobLinkedList::~JobLinkedList()

JobLinkedList::~JobLinkedList() // version 2

{

while(this->count > 0)

this->remove(0); // release memory

// do not use

// for(int i = 0; i < this->count; i++)

// this->remove(0);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 31 / 46

// this->remove(0);

// why?

}

Good Programming style

• Be very careful when using pointers.

• Write your codes slowly and as clear as possible.

– Compile and test your program whenever you complete a function!

• When there is a run-time error, check whether you are accessing a

NULL pointer.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 32 / 46

NULL pointer.

• Check whether you need a destructor or a copy constructor when

your class has a pointer member.

Outline

• Basic ideas

• Lists: class JobList

• Linked lists: JobLinkedList

• More data structures

• Topics not covered in this semester

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 33 / 46

• Topics not covered in this semester

Stacks and queues

• A stack is a special list. A queue is another special list.

• Nodes can not be inserted/removed at any place we want.

– Stack: last-in-first-out (LIFO). A node can only be inserted and removed at

the top of the stack.

– Queue: first-in-first-out (FIFO). A node can only be inserted at the tail and

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 34 / 46

– Queue: first-in-first-out (FIFO). A node can only be inserted at the tail and

removed at the head.

• Many real-life situations can be modeled as stacks or queues.

Applications of stacks

• The poker game solitaire.

• The Hanoi tower.

• Function calls in your programs.

• Graph traversal: Depth-first search (DFS).

• Calculators.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 35 / 46

• Calculators.

Applications of queues

• Consumer waiting lines.

• FIFO job scheduling.

• Topological sorting.

• Graph traversal: Breadth-first search (BFS).

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 36 / 46

Creating a job stack by inheritance

• Though not realistic, we will implement a job stack by inheriting

the job linked list.

– The implementation of a job queue is left to you.

• This example shows

– The application of inheritance: Once you have a list, it is very easy to

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 37 / 46

– The application of inheritance: Once you have a list, it is very easy to

create a stack or a queue.

– The application of encapsulation: The idea of interfaces.

– The application of protected inheritance: Not all public members of the

parent class should be public for the child class.

JobStack

class JobStack : protected JobLinkedList

{

public:

JobStack();

~JobStack();

void push(Job job);

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 38 / 46

void push(Job job);

Job pop();

void print();

};

/* protected: we want to hide insert() and remove() inherited from

JobLinkedList */

JobStack

JobStack::JobStack() : JobLinkedList()

{

;

}

JobStack::~JobStack()

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 39 / 46

JobStack::~JobStack()

{

;

}

void JobStack::print()

{

JobLinkedList::print();

}

JobStack

// insert at top (end)

void JobStack::push(Job job)

{

JobLinkedList::insert(job, this->count);

}

// remove the one at top (end)

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 40 / 46

// remove the one at top (end)

Job JobStack::pop()

{

return JobLinkedList::remove(this->count);

}

Remarks

• The class JobStack is indeed a stack. It is safe and effective.

• However, it is not the most efficient implementation.

– Operations are executed through another class.

– push() and pop() are both O(n). With a Job pointer tail, they can be

both O(1) (the codes will be more complicated).

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 41 / 46

both O(1) (the codes will be more complicated).

• Be careful that insert() and remove() should be hided.

– If you use public inheritance, you may override them.

• Inheriting JobList also creates a safe and effective job stack.

Trees

• A list, stack, or queue is a linear (one-dimensional) data structure.

• A tree is a two-dimensional data structure.

• A binary tree is a useful two-dimensional data structure.

class BTNode

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 42 / 46

class BTNode

{

private;

BTNode* left;

BTNode* right;

// …

}

Outline

• Basic ideas

• Lists: class JobList

• Linked lists: JobLinkedList

• More data structures

• Topics not covered in this semester

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 43 / 46

• Topics not covered in this semester

Topics not covered in this course

• Operator overloading.

– JobLinkedList aList; aList[3];

• Template classes and functions.

– Job list, product list, consumer list, …

• And many others.

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 44 / 46

• And many others.

Topics not covered in this course

• Even if you want to develop a system only with those skills you

learned, there are too many details to cover.

• Also, experience is required to write programs efficiently and

correctly.

• Learning is necessary but not sufficient. Practicing is also

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 45 / 46

• Learning is necessary but not sufficient. Practicing is also

necessary.

• Practice makes perfect!

– This is also true for the instructor of this course.

Finish!! Thank you~~~~

Ling-Chieh Kung NTU IM

Programming Design , Spring 2013 - Data Structures 46 / 46

