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Variables and arrays

• Today we introduce arrays. 

– A collection of variables of the same type. 

– An array variable is of an array type, a nonbasic data type. 

• There are many nonbasic data types: 

– Arrays. 
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– Pointers. 

– Self-defined data types (e.g., classes). 

• Before we introduce arrays, let’s talk more about variables and basic data types. 



Outline

• More about variables 

– Constant variables

– Casting among basic data types

• Single-dimensional arrays

• Multi-dimensional arrays 
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Constant variables

• Sometimes we want to use a variable to store a particular value. 

– In a program doing calculations regarding circles, the value of π may be 
used repeatedly. 

– We do not want to write many 3.14 throughout the program! Why? 

– We may declare pi = 3.14 once and then use pi repeatedly. 

symbolic constant
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• In this case, this variable is actually a symbolic constant. 

– We want to prevent it from being modified. 



Constant variables

• A constant is one kind of variables.

• To declare a constant, use the key word const:

– const int a = 100; 

– All further assignment operations on a constant generate compilation errors. 

– That is why we must initialize a constant. 
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• It is suggested to use capital characters and underlines to name constants. 
This distinguishes them from usual variables. 

– const double PI = 3.1416;

– const int MAX_LEVEL = 5;

– Some people use lowercase characters and underlines. 



Casting

• Variables are containers. 

• Variables of different types are containers of different sizes/shapes. 

– long≧ int≧ short. 

– “Shapes” of int and float are different (though sizes are identical). 

• A big container may store a small item. A big item must be “cut” to be stored in 
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a small container. 

– So are variables of different types. 

short s = 100;
int i = s; // 100
i = 100000; 
s = i; // -31072

double d = 5; // d = 5.0
int s = 5.5; // s = 5



Casting

• Changing the type of a variable or literal is called casting. 

• There are two kinds of casting: 

– Implicit casting: from a small type to a large type. 

– Explicit casting: from a large type to a small type. 

• When implicit casting occurs, there is no value of precision loss. 
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– The system does that automatically. 

– The value of that variable or literal does not change. 

– There is no need for a programmer to indicate how to implicitly cast one 
small type to a large type. 

• To cast a large type to a small type, a programmer is responsible for indicating 
how to do it explicitly. 



Explicit casting

• Suppose we want to store 5.6 to an integer: 

– int a = 5.6; is not good. 

– int a = static_cast<int>(5.6); is better. 

• To cast basic data types, we use static_cast:

static_cast<type>(expression)
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– When a float or double is cast to an integer value (and there is no value loss), 
the fractional part is truncated. 

• In the example above, both statements makes a equal 5. 

– Then why bothering? 

static_cast<type>(expression)



Explicit casting

• Explicit casting is to indicate the way of casting we want. 

– For basic types, there is only one way to cast a large type to a small type. 

– For more complicated types, however, there may be multiple. 

• There are four different explicit casting operators. 

– static_cast, dynamic_cast, reindivter_cast, and const_cast. 
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– For basic data types, static_cast is enough. 

• By explicitly indicating how to cast: 

– This is to make sure that, at the run time, the program runs as we expect. 

– This is also to notify other programmers (or the future ourselves). 

• Explicit casting also allows for a temporary change of types (see below). 



Good programming style

• There is an old way of explicit casting: 

– For example, int a = (int) 5.6; .

• Try to avoid it! 

(type) expression
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– This operation includes all four possibilities, and we have no idea which one 
will be performed at the run time.  

• If possible, try to modify your variable declaration to avoid casting.



Casting for division

• Let’s try this program: 

• The division operator returns an integer if 
both operands (numerator and denominator) 
are integers. 

• How to get our desired results? 

– If allowed, we may change the data 

int d1 = 10;
int d2 = 3; 
cout << d1 / d2 << "\n"; 

double d3 = 10;
int d4 = 3; 
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– If allowed, we may change the data 
types of the operands. 

– If not allowed, we may cast the 
operands temporarily. 

int d4 = 3; 
cout << d3 / d4 << "\n"; 

int d5 = 10;
double d6 = 3; 
cout << d5 / d6 << "\n"; 



Casting for division

• Which one works? 

int d1 = 10;
int d2 = 3; 
cout << static_cast<double>(d1 / d2); 

int d1 = 10;
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• Casting can be a big issue when we work with nonbasic data types. 

• At this moment, just be aware of fractional and integer values. 

int d1 = 10;
int d2 = 3; 
cout << static_cast<double>(d1) / d2; 



Outline

• More about variables 

• Single-dimensional arrays

• Multi-dimensional arrays 
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Set of similar variables

• Suppose we want to write a program to store five students’ scores. 

• We may declare 5 variables.

– int score1, score2, score3, score4, score5; 

• What if we have 500 students? How to declare 500 variables? 

• Even if we have only 5, we are unable to write a loop to process them. 
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for (int i = 0; i < 5; i++)
{
cout << score1; // and then?
cout << scorei; // error!

}



Why arrays?

• An array is a collection of variables with the same type. 

• To declare five integer variables for scores, we may write: 

– These variables are declared with the same array name (score). 

int score[5]; 
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– They are distinguished by their indices. 

cout << score[2]; 



An array is a type

• Arrays are often used with loops. 

– Quite often the loop counter is used 
as the array index. 

type

int score[5];
for (int i = 0; i < 5; i++)
cin >> score[i];

for (int i = 0; i < 5; i++)
cout << score[i] << " ";
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• An array is also a (nonbasic) type.

– The type of score is an “integer 

array” (of length 5). 

– What is this? 

• We will go back to this when we introduce pointers. 

– For now, just treat an array as a sequence of variables. 

cout << score;



Array declaration

• The grammar for declaring an array is 

• E.g.,  int score[5];

– This is an integer array with five elements (the 
array length/size

data type array name[number of elements];

Address Identifier Value

0x20c648 score[0] ?

0x20c64c score[1] ?

0x20c650 score[2] ?
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array length/size is 5). 

– Each array element itself is a variable. 

– The index starts at 0! They are score[0], 
score[1], …, and score[4]. 

• It occupies 4 bytes * 5 = 20 continuous bytes. 

– Try cout << sizeof(score);!

0x20c654 score[3] ?

0x20c658 score[4] ?

Memory



An example

• We have written a program for 5 scores:  int score[5];
for (int i = 0; i < 5; i++)
cin >> score[i];

for (int i = 0; i < 5; i++)
cout << score[i] << " ";
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• If we have 500 students: int score[500];
for (int i = 0; i < 500; i++)
cin >> score[i];

for (int i = 0; i < 500; i++)
cout << score[i] << " ";



Array initialization

• Arrays are not initialized automatically. 

int array[100]; 

for (int i = 0; i < 100; i++)
{
cout << array[i] << " ";
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cout << array[i] << " ";
if (i % 10 == 9)
cout << "\n";

}



Array initialization

• Various ways of initializing an array: 

– int dayInMonth[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 
31, 30, 31}; 

– int dayInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 
30, 31}; (size of dayInMonthwill be 12)

– int dayInMonth[12] = {31, 28, 31}; (nine 0s)
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– int dayInMonth[12] = {31, 28, 31}; (nine 0s)

– int dayInMonth[3] = {1, 2, 3, 4}; (error!) 

• To initialize all elements to 0:

– int score[500] = {0}; (500 0s)



The boundary of an array

• In C++, it is allowed for one to “go 
outside an array”. 

– No compilation error! 

– May or may not generate a run 
time error: If our program try to 
access a memory space allocated 

int array[100] = {0}; 

for (int i = 0; i < 500; i++)
{
cout << array[i] << " ";
if (i % 10 == 9)
cout << "\n";
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access a memory space allocated 
to another program, the operating 
system will terminate our program. 

– The result is unpredictable. 

• A programmer must be aware of array 
bounds by herself/himself. 

cout << "\n";
}



Memory allocation for arrays

• So what happens when we declare or access 
an array? 

• When we declare an array:

int score[5];

Address Identifier Value

0x20c648 score ?

0x20c64c ?

0x20c650 ?
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– The system allocates memory spaces 
according to the type and length. 

– The array variable indicates the 
beginning address of the space. 

cout << score; // 0x20c648

0x20c654 ?

0x20c658 ?

Memory



Memory indexing for arrays

• When we access an array element: 

– The array index indicates the amount of 
offset for accessing a memory space. 

– score[i]means to take the variable 
stored at “starting from score, offset by 
i units”. 

Address Identifier Value

0x20c648 score ?

0x20c64c ?

0x20c650 ?

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 23 / 41

i units”. 

• So score[i] is always accepted by the 
compiler for any value of i. 

– Always be careful when using arrays! 

cout << score + 2; // 0x20c650

0x20c654 ?

0x20c658 ?

Memory



• Sometimes we are given an array whose size is not known by us. 

• One way of finding the array length is to use sizeof. 

– It returns the total number of bytes allocated to that array. 

• Suppose the array is named score, its length equals

sizeof(score) / sizeof(score[0]); 

Finding the array length
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– sizeof(score) is the total number of bytes allocated to the array. 

– sizeof(score[0]) is the number of bytes allocated to the first element. 

sizeof(score) / sizeof(score[0]); 



Finding the array length

• Example: Let’s print out all elements in an array:

int array[] = {1, 2, 3};
int length = sizeof(array) / sizeof(array[0]);
for(int i = 0; i < length; i++)
cout << array[i] << " ";
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• When using sizeof to count the length of, e.g., an integer array:

– Use sizeof(a) / sizeof(a[0]).

– Do not use sizeof(a) / sizeof(int). 

• Why? 

cout << array[i] << " ";



Example: finding the maximum

• How to find the maximum among many numbers? 

• Suppose we want to write a program that: 

– Asks the user to input 10 numbers. 

– Once 10 numbers are input, prints out the maximum. 

float value[10] = {0};

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 26 / 41

float value[10] = {0};
for (int i = 0; i < 10; i++)
cin >> value[i];

// and then? 



Example: finding the maximum

• Now the task is to find the maximum in value. 

• In many cases, we write an algorithm to complete a task. 

– An algorithm is a step-by-step procedure that completes a given task. 

• When designing an algorithm, we typically write pseudocodes first. 

– A description of steps in words organized in a program structure. 
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– To ignore the details of implementations. 

• How to find the maximum? 

– Compare the first two and find the larger one. 

– Use it to be compare with the third one. 

– And so on. 



Example: finding the maximum

• One pseudocode for finding the 
maximum in a set is: 

Given a vector A of n numbers: 
for i from 0 to n – 1

find the larger between Ai and Ai + 1

put the larger one at Ai + 1

• Implementation: 

// value: a size-10 float array
for (int i = 0; i < 9; i++)
{
if (value[i] > value [i + 1])
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• What some drawbacks of this 
implementation (or algorithm)? 

put the larger one at Ai + 1

output An

if (value[i] > value [i + 1])
{
float temp = value[i + 1];
value[i + 1] = value[i];
value[i] = temp;

}
}
cout << value[9];



Example: finding the maximum

• Let’s record the current  maximum at some other place: 

float value[10] = {0};
for (int i = 0; i < 10; i++)
cin >> value[i];

float max = value[0];
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float max = value[0];
for (int i = 1; i < 10; i++)
{
if (value[i] > max)
max = value[i];

}
cout << max;



Good programming style

• It is suggested to declare a 
constant and use it to: 

– Declare an array. 

– Control any loop that 
traverses the array. 

• Why? 

const int VALUE_LEN = 10;

float value[VALUE_LEN] = {0};
for (int i = 0; i < VALUE_LEN; i++)
cin >> value[i];

float max = value[0];
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• Why? float max = value[0];
for (int i = 1; i < VALUE_LEN; i++)
{
if (value[i] > max)
max = value[i];

}
cout << max;



Things you cannot (should not) do

• Suppose you have two arrays a1 and a2. 

– Even if they have the same length 
and their elements have the same 
type, you cannot write a1 = a2. 

This results in a syntax error. 

– You also cannot compare two arrays 

int a1[5] = {1, 2, 3, 4, 5};
int a2[5] = {0}; 

// a2 = a1; // error!
for (int i = 1; i < 5; i++)
{
a2[i] = a1[i];
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– You also cannot compare two arrays 
with ==, >, <, etc. Why? 

• a1 and a2 are just two memory 

addresses! 

• To copy one array to another array, use a 
loop to copy each element one by one. 

a2[i] = a1[i];
}



Things you cannot (should not) do

• Although allowed in Dev-C++, you should not 
declare an array with its length being a 
nonconstant variable. 

– This creates a syntax error in some compilers. 

– In ANSI C++, the length of an array must be 
fixed when it is declared. 

// DO NOT do this
int x = 0;
cin >> x;
// very bad!
int array[x];
array[2] = 3; // etc.
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fixed when it is declared. 

– To dynamically determine the array length: 

• The index of an array variable should be an 
integer. 

– Some compiler allows a fractional index 
(casting is done automatically).  

// Do this
int x = 0;
cin >> x;
// good! 
int* array = new int[x];
array[2] = 3; // etc. 



Outline

• More about variables 

• Single-dimensional arrays

• Multi-dimensional arrays
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Two-dimensional arrays

• While a one-dimensional array is like a vector, a two-dimensional array is like a 
matrix or table. 

• Intuitively, a two-dimensional array is composed by rows and columns. 

– To declare a two-dimensional array, we should specify the numbers of rows 
and columns. 
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• As an example, let’s declare an array with 3 rows and 7 columns. 

data type array name[rows][columns];

double score[3][7];



Two-dimensional arrays

• double score[3][7];

0 1 2 3 4 5 6

0 [0][0] [0][1] [0][2]

1 [1][0] [x][y]

2 [2][0]
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– score[0][0] is the 1st and score[0][1] is the 2nd. What are x and y?

• We may initialize a two-dimensional array as follows: 

– int score[2][3] = {{4, 5, 6}, {7, 8, 9}};

– int score[2][3] = {4, 5, 6, 7, 8, 9}; // 2 can be omitted.

2 [2][0]



Example: matrix addition

• Let’s write a program to do matrix addition. 

int a[2][3] = {{1, 2, 3}, {1, 2, 3}};
int b[2][3] = {{4, 5, 6}, {7, 8, 9}};
int c[2][3] = {0};

for (int i = 0; i < 2; i++)
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for (int i = 0; i < 2; i++)
{ 
for (int j = 0; j < 3; j++)
c[i][j] = a[i][j] + b[i][j];

}



Example: tic-tac-toe

• Let’s write a program to detect the winner of a tic-tac-toe game: 

int a[3][3] = {{1, 0, 1}, {1, 1, 0}, {0, 0, 1}};

for (int i = 0; i < 2; i++)
{ 
if (a[i][0] == a[i][1] && a[i][1] == a[i][2])

× ○ ×

× × ○

○ ○ ×
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if (a[i][0] == a[i][1] && a[i][1] == a[i][2])
{
cout << a[i][0] << endl; 
break;

}
}
// then check for columns and diagonals



Embedded one-dimensional arrays

• Two-dimensional arrays are not actually rows and columns. 

• A two-dimensional array is actually several one-dimensional arrays. 

0 1 2 3 4 5 6

[0][0] [0][1] [0][2]score[0]
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• Try this:

[1][0]

[2][0]

score[1]

score[2]

int a[2][3];
cout << a << " " << a[0] << " " << a[1] << endl;



Embedded one-dimensional arrays

• int a[2][3];

– a[0][0] is the first element. 

– a[0][1] is the second element. 

– a[1][0] is the fourth element. 

• Two dimensional arrays are stored linearly. 

Address Identifier Value

0x20c648 a[0] ?

0x20c64c ?

0x20c650 ?
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– And still consecutively. 

• Try this: 

int a[2][3];
cout << a << " " << a[0] << endl;
cout << a[1] << " " << a + 1 << endl;
cout << sizeof(a) << " " << sizeof(a[0]) << endl;

0x20c654 a[1] ?

0x20c658 ?

0x20c65c ?

Memory



Embedded one-dimensional arrays

• So for a two dimensional array score: 

– score[0] is the ____th one-dimensional array. 

– score[0][j] is the ____th element of the ____th one-dimensional array. 

– score[i] is the ____th one-dimensional array. 

• Which description is more accurate? 
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– There is an array having three rows and seven columns. 

– There is an array having three rows, each having seven elements. 

• All these one-dimensional arrays must be of the same length. 

– Two-dimensional arrays with various row lengths can be built with pointers. 



Multi-dimensional arrays

• We may have arrays with even higher dimensions. 

– char threeDim[3][4][5];

– Int eightDim[3][4][5][6][1][7][4][8];

• Difficult to imagine and use.
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