
Programming Design

Arrays

Ling-Chieh Kung

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 1 / 41

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Variables and arrays

• Today we introduce arrays.

– A collection of variables of the same type.

– An array variable is of an array type, a nonbasic data type.

• There are many nonbasic data types:

– Arrays.

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 2 / 41

– Pointers.

– Self-defined data types (e.g., classes).

• Before we introduce arrays, let’s talk more about variables and basic data types.

Outline

• More about variables

– Constant variables

– Casting among basic data types

• Single-dimensional arrays

• Multi-dimensional arrays

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 3 / 41

Constant variables

• Sometimes we want to use a variable to store a particular value.

– In a program doing calculations regarding circles, the value of π may be
used repeatedly.

– We do not want to write many 3.14 throughout the program! Why?

– We may declare pi = 3.14 once and then use pi repeatedly.

symbolic constant

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 4 / 41

• In this case, this variable is actually a symbolic constant.

– We want to prevent it from being modified.

Constant variables

• A constant is one kind of variables.

• To declare a constant, use the key word const:

– const int a = 100;

– All further assignment operations on a constant generate compilation errors.

– That is why we must initialize a constant.

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 5 / 41

• It is suggested to use capital characters and underlines to name constants.
This distinguishes them from usual variables.

– const double PI = 3.1416;

– const int MAX_LEVEL = 5;

– Some people use lowercase characters and underlines.

Casting

• Variables are containers.

• Variables of different types are containers of different sizes/shapes.

– long≧ int≧ short.

– “Shapes” of int and float are different (though sizes are identical).

• A big container may store a small item. A big item must be “cut” to be stored in

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 6 / 41

a small container.

– So are variables of different types.

short s = 100;
int i = s; // 100
i = 100000;
s = i; // -31072

double d = 5; // d = 5.0
int s = 5.5; // s = 5

Casting

• Changing the type of a variable or literal is called casting.

• There are two kinds of casting:

– Implicit casting: from a small type to a large type.

– Explicit casting: from a large type to a small type.

• When implicit casting occurs, there is no value of precision loss.

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 7 / 41

– The system does that automatically.

– The value of that variable or literal does not change.

– There is no need for a programmer to indicate how to implicitly cast one
small type to a large type.

• To cast a large type to a small type, a programmer is responsible for indicating
how to do it explicitly.

Explicit casting

• Suppose we want to store 5.6 to an integer:

– int a = 5.6; is not good.

– int a = static_cast<int>(5.6); is better.

• To cast basic data types, we use static_cast:

static_cast<type>(expression)

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 8 / 41

– When a float or double is cast to an integer value (and there is no value loss),
the fractional part is truncated.

• In the example above, both statements makes a equal 5.

– Then why bothering?

static_cast<type>(expression)

Explicit casting

• Explicit casting is to indicate the way of casting we want.

– For basic types, there is only one way to cast a large type to a small type.

– For more complicated types, however, there may be multiple.

• There are four different explicit casting operators.

– static_cast, dynamic_cast, reindivter_cast, and const_cast.

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 9 / 41

– For basic data types, static_cast is enough.

• By explicitly indicating how to cast:

– This is to make sure that, at the run time, the program runs as we expect.

– This is also to notify other programmers (or the future ourselves).

• Explicit casting also allows for a temporary change of types (see below).

Good programming style

• There is an old way of explicit casting:

– For example, int a = (int) 5.6; .

• Try to avoid it!

(type) expression

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 10 / 41

– This operation includes all four possibilities, and we have no idea which one
will be performed at the run time.

• If possible, try to modify your variable declaration to avoid casting.

Casting for division

• Let’s try this program:

• The division operator returns an integer if
both operands (numerator and denominator)
are integers.

• How to get our desired results?

– If allowed, we may change the data

int d1 = 10;
int d2 = 3;
cout << d1 / d2 << "\n";

double d3 = 10;
int d4 = 3;

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 11 / 41

– If allowed, we may change the data
types of the operands.

– If not allowed, we may cast the
operands temporarily.

int d4 = 3;
cout << d3 / d4 << "\n";

int d5 = 10;
double d6 = 3;
cout << d5 / d6 << "\n";

Casting for division

• Which one works?

int d1 = 10;
int d2 = 3;
cout << static_cast<double>(d1 / d2);

int d1 = 10;

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 12 / 41

• Casting can be a big issue when we work with nonbasic data types.

• At this moment, just be aware of fractional and integer values.

int d1 = 10;
int d2 = 3;
cout << static_cast<double>(d1) / d2;

Outline

• More about variables

• Single-dimensional arrays

• Multi-dimensional arrays

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 13 / 41

Set of similar variables

• Suppose we want to write a program to store five students’ scores.

• We may declare 5 variables.

– int score1, score2, score3, score4, score5;

• What if we have 500 students? How to declare 500 variables?

• Even if we have only 5, we are unable to write a loop to process them.

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 14 / 41

for (int i = 0; i < 5; i++)
{
cout << score1; // and then?
cout << scorei; // error!

}

Why arrays?

• An array is a collection of variables with the same type.

• To declare five integer variables for scores, we may write:

– These variables are declared with the same array name (score).

int score[5];

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 15 / 41

– They are distinguished by their indices.

cout << score[2];

An array is a type

• Arrays are often used with loops.

– Quite often the loop counter is used
as the array index.

type

int score[5];
for (int i = 0; i < 5; i++)
cin >> score[i];

for (int i = 0; i < 5; i++)
cout << score[i] << " ";

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 16 / 41

• An array is also a (nonbasic) type.

– The type of score is an “integer

array” (of length 5).

– What is this?

• We will go back to this when we introduce pointers.

– For now, just treat an array as a sequence of variables.

cout << score;

Array declaration

• The grammar for declaring an array is

• E.g., int score[5];

– This is an integer array with five elements (the
array length/size

data type array name[number of elements];

Address Identifier Value

0x20c648 score[0] ?

0x20c64c score[1] ?

0x20c650 score[2] ?

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 17 / 41

array length/size is 5).

– Each array element itself is a variable.

– The index starts at 0! They are score[0],
score[1], …, and score[4].

• It occupies 4 bytes * 5 = 20 continuous bytes.

– Try cout << sizeof(score);!

0x20c654 score[3] ?

0x20c658 score[4] ?

Memory

An example

• We have written a program for 5 scores: int score[5];
for (int i = 0; i < 5; i++)
cin >> score[i];

for (int i = 0; i < 5; i++)
cout << score[i] << " ";

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 18 / 41

• If we have 500 students: int score[500];
for (int i = 0; i < 500; i++)
cin >> score[i];

for (int i = 0; i < 500; i++)
cout << score[i] << " ";

Array initialization

• Arrays are not initialized automatically.

int array[100];

for (int i = 0; i < 100; i++)
{
cout << array[i] << " ";

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 19 / 41

cout << array[i] << " ";
if (i % 10 == 9)
cout << "\n";

}

Array initialization

• Various ways of initializing an array:

– int dayInMonth[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30,
31, 30, 31};

– int dayInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31}; (size of dayInMonthwill be 12)

– int dayInMonth[12] = {31, 28, 31}; (nine 0s)

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 20 / 41

– int dayInMonth[12] = {31, 28, 31}; (nine 0s)

– int dayInMonth[3] = {1, 2, 3, 4}; (error!)

• To initialize all elements to 0:

– int score[500] = {0}; (500 0s)

The boundary of an array

• In C++, it is allowed for one to “go
outside an array”.

– No compilation error!

– May or may not generate a run
time error: If our program try to
access a memory space allocated

int array[100] = {0};

for (int i = 0; i < 500; i++)
{
cout << array[i] << " ";
if (i % 10 == 9)
cout << "\n";

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 21 / 41

access a memory space allocated
to another program, the operating
system will terminate our program.

– The result is unpredictable.

• A programmer must be aware of array
bounds by herself/himself.

cout << "\n";
}

Memory allocation for arrays

• So what happens when we declare or access
an array?

• When we declare an array:

int score[5];

Address Identifier Value

0x20c648 score ?

0x20c64c ?

0x20c650 ?

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 22 / 41

– The system allocates memory spaces
according to the type and length.

– The array variable indicates the
beginning address of the space.

cout << score; // 0x20c648

0x20c654 ?

0x20c658 ?

Memory

Memory indexing for arrays

• When we access an array element:

– The array index indicates the amount of
offset for accessing a memory space.

– score[i]means to take the variable
stored at “starting from score, offset by
i units”.

Address Identifier Value

0x20c648 score ?

0x20c64c ?

0x20c650 ?

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 23 / 41

i units”.

• So score[i] is always accepted by the
compiler for any value of i.

– Always be careful when using arrays!

cout << score + 2; // 0x20c650

0x20c654 ?

0x20c658 ?

Memory

• Sometimes we are given an array whose size is not known by us.

• One way of finding the array length is to use sizeof.

– It returns the total number of bytes allocated to that array.

• Suppose the array is named score, its length equals

sizeof(score) / sizeof(score[0]);

Finding the array length

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 24 / 41

– sizeof(score) is the total number of bytes allocated to the array.

– sizeof(score[0]) is the number of bytes allocated to the first element.

sizeof(score) / sizeof(score[0]);

Finding the array length

• Example: Let’s print out all elements in an array:

int array[] = {1, 2, 3};
int length = sizeof(array) / sizeof(array[0]);
for(int i = 0; i < length; i++)
cout << array[i] << " ";

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 25 / 41

• When using sizeof to count the length of, e.g., an integer array:

– Use sizeof(a) / sizeof(a[0]).

– Do not use sizeof(a) / sizeof(int).

• Why?

cout << array[i] << " ";

Example: finding the maximum

• How to find the maximum among many numbers?

• Suppose we want to write a program that:

– Asks the user to input 10 numbers.

– Once 10 numbers are input, prints out the maximum.

float value[10] = {0};

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 26 / 41

float value[10] = {0};
for (int i = 0; i < 10; i++)
cin >> value[i];

// and then?

Example: finding the maximum

• Now the task is to find the maximum in value.

• In many cases, we write an algorithm to complete a task.

– An algorithm is a step-by-step procedure that completes a given task.

• When designing an algorithm, we typically write pseudocodes first.

– A description of steps in words organized in a program structure.

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 27 / 41

– To ignore the details of implementations.

• How to find the maximum?

– Compare the first two and find the larger one.

– Use it to be compare with the third one.

– And so on.

Example: finding the maximum

• One pseudocode for finding the
maximum in a set is:

Given a vector A of n numbers:
for i from 0 to n – 1

find the larger between Ai and Ai + 1

put the larger one at Ai + 1

• Implementation:

// value: a size-10 float array
for (int i = 0; i < 9; i++)
{
if (value[i] > value [i + 1])

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 28 / 41

• What some drawbacks of this
implementation (or algorithm)?

put the larger one at Ai + 1

output An

if (value[i] > value [i + 1])
{
float temp = value[i + 1];
value[i + 1] = value[i];
value[i] = temp;

}
}
cout << value[9];

Example: finding the maximum

• Let’s record the current maximum at some other place:

float value[10] = {0};
for (int i = 0; i < 10; i++)
cin >> value[i];

float max = value[0];

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 29 / 41

float max = value[0];
for (int i = 1; i < 10; i++)
{
if (value[i] > max)
max = value[i];

}
cout << max;

Good programming style

• It is suggested to declare a
constant and use it to:

– Declare an array.

– Control any loop that
traverses the array.

• Why?

const int VALUE_LEN = 10;

float value[VALUE_LEN] = {0};
for (int i = 0; i < VALUE_LEN; i++)
cin >> value[i];

float max = value[0];

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 30 / 41

• Why? float max = value[0];
for (int i = 1; i < VALUE_LEN; i++)
{
if (value[i] > max)
max = value[i];

}
cout << max;

Things you cannot (should not) do

• Suppose you have two arrays a1 and a2.

– Even if they have the same length
and their elements have the same
type, you cannot write a1 = a2.

This results in a syntax error.

– You also cannot compare two arrays

int a1[5] = {1, 2, 3, 4, 5};
int a2[5] = {0};

// a2 = a1; // error!
for (int i = 1; i < 5; i++)
{
a2[i] = a1[i];

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 31 / 41

– You also cannot compare two arrays
with ==, >, <, etc. Why?

• a1 and a2 are just two memory

addresses!

• To copy one array to another array, use a
loop to copy each element one by one.

a2[i] = a1[i];
}

Things you cannot (should not) do

• Although allowed in Dev-C++, you should not
declare an array with its length being a
nonconstant variable.

– This creates a syntax error in some compilers.

– In ANSI C++, the length of an array must be
fixed when it is declared.

// DO NOT do this
int x = 0;
cin >> x;
// very bad!
int array[x];
array[2] = 3; // etc.

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 32 / 41

fixed when it is declared.

– To dynamically determine the array length:

• The index of an array variable should be an
integer.

– Some compiler allows a fractional index
(casting is done automatically).

// Do this
int x = 0;
cin >> x;
// good!
int* array = new int[x];
array[2] = 3; // etc.

Outline

• More about variables

• Single-dimensional arrays

• Multi-dimensional arrays

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 33 / 41

Two-dimensional arrays

• While a one-dimensional array is like a vector, a two-dimensional array is like a
matrix or table.

• Intuitively, a two-dimensional array is composed by rows and columns.

– To declare a two-dimensional array, we should specify the numbers of rows
and columns.

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 34 / 41

• As an example, let’s declare an array with 3 rows and 7 columns.

data type array name[rows][columns];

double score[3][7];

Two-dimensional arrays

• double score[3][7];

0 1 2 3 4 5 6

0 [0][0] [0][1] [0][2]

1 [1][0] [x][y]

2 [2][0]

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 35 / 41

– score[0][0] is the 1st and score[0][1] is the 2nd. What are x and y?

• We may initialize a two-dimensional array as follows:

– int score[2][3] = {{4, 5, 6}, {7, 8, 9}};

– int score[2][3] = {4, 5, 6, 7, 8, 9}; // 2 can be omitted.

2 [2][0]

Example: matrix addition

• Let’s write a program to do matrix addition.

int a[2][3] = {{1, 2, 3}, {1, 2, 3}};
int b[2][3] = {{4, 5, 6}, {7, 8, 9}};
int c[2][3] = {0};

for (int i = 0; i < 2; i++)

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 36 / 41

for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 3; j++)
c[i][j] = a[i][j] + b[i][j];

}

Example: tic-tac-toe

• Let’s write a program to detect the winner of a tic-tac-toe game:

int a[3][3] = {{1, 0, 1}, {1, 1, 0}, {0, 0, 1}};

for (int i = 0; i < 2; i++)
{
if (a[i][0] == a[i][1] && a[i][1] == a[i][2])

× ○ ×

× × ○

○ ○ ×

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 37 / 41

if (a[i][0] == a[i][1] && a[i][1] == a[i][2])
{
cout << a[i][0] << endl;
break;

}
}
// then check for columns and diagonals

Embedded one-dimensional arrays

• Two-dimensional arrays are not actually rows and columns.

• A two-dimensional array is actually several one-dimensional arrays.

0 1 2 3 4 5 6

[0][0] [0][1] [0][2]score[0]

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 38 / 41

• Try this:

[1][0]

[2][0]

score[1]

score[2]

int a[2][3];
cout << a << " " << a[0] << " " << a[1] << endl;

Embedded one-dimensional arrays

• int a[2][3];

– a[0][0] is the first element.

– a[0][1] is the second element.

– a[1][0] is the fourth element.

• Two dimensional arrays are stored linearly.

Address Identifier Value

0x20c648 a[0] ?

0x20c64c ?

0x20c650 ?

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 39 / 41

– And still consecutively.

• Try this:

int a[2][3];
cout << a << " " << a[0] << endl;
cout << a[1] << " " << a + 1 << endl;
cout << sizeof(a) << " " << sizeof(a[0]) << endl;

0x20c654 a[1] ?

0x20c658 ?

0x20c65c ?

Memory

Embedded one-dimensional arrays

• So for a two dimensional array score:

– score[0] is the ____th one-dimensional array.

– score[0][j] is the ____th element of the ____th one-dimensional array.

– score[i] is the ____th one-dimensional array.

• Which description is more accurate?

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 40 / 41

– There is an array having three rows and seven columns.

– There is an array having three rows, each having seven elements.

• All these one-dimensional arrays must be of the same length.

– Two-dimensional arrays with various row lengths can be built with pointers.

Multi-dimensional arrays

• We may have arrays with even higher dimensions.

– char threeDim[3][4][5];

– Int eightDim[3][4][5][6][1][7][4][8];

• Difficult to imagine and use.

More about variables Single-dimensional arrays Multi-dimensional arrays

Ling-Chieh Kung (NTU IM)Programming Design – Arrays 41 / 41

	Programming Design�Arrays
	Variables and arrays
	Outline
	Constant variables
	Constant variables
	Casting
	Casting
	Explicit casting
	Explicit casting
	Good programming style
	Casting for division
	Casting for division
	Outline
	Set of similar variables
	Why arrays?
	An array is a type
	Array declaration
	An example
	Array initialization
	Array initialization
	The boundary of an array
	Memory allocation for arrays
	Memory indexing for arrays
	Finding the array length
	Finding the array length
	Example: finding the maximum
	Example: finding the maximum
	Example: finding the maximum
	Example: finding the maximum
	Good programming style
	Things you cannot (should not) do
	Things you cannot (should not) do
	Outline
	Two-dimensional arrays
	Example: matrix addition
	Embedded one-dimensional arrays
	

