
Ling-Chieh Kung (NTU IM)Programming Design – Functions 1 / 58

Programming Design

Functions

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 2 / 58

Functions

• In C++ and most modern programming languages, we may put statements into

functions to be invoked in the future.

– Also known as procedures in some languages.

• Why functions?

• We need modules instead of a huge main function.

– Easier to divide the works: modularization.

– Easier to debug: maintenance.

– Easier to maintain consistency.

• We need something that can be used repeatedly.

– Enhance reusability.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 3 / 58

Outline

• Basics of functions

• More about return values

• Scope of variables revisited

• Advances of functions

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 4 / 58

Structure of functions

• In C++, a function is composed of a header and a body.

• A header for declaration:

– A function name (identifier).

– A list of input parameters.

– A return value.

• A body for definition:

– Statements that define the task.

Function

Input parameters

A returned value

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 5 / 58

Structure of functions

• There are two types of functions:

– System-defined functions.

– User-defined functions.

• System-defined functions are defined in the C++

standard library.

– To include the definition, use #include.

– <iostream>, <iomanip>, <cmath>,

<climits>, etc.

– Those from C are named by adding “c” as

the initial.

• To study user-defined functions, let’s start from an example.

#include <iostream>

#include <cmath>

using namespace std;

int main ()

{

int c = 0;

cin >> c;

cout << abs(c) << "\n";

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 6 / 58

Function definition

• There is an add() function:

• In the main function we invoke (call) the
add() function.

• Before the main function, there is a function

header/prototype declaring the function.

• After the main function, there is a function

body defining the function.

#include <iostream>

using namespace std;

int add(int, int);

int main()

{

int c = add(10, 20);

cout << c << "\n";

return 0;

}

int add(int num1, int num2)

{

return num1 + num2;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 7 / 58

Function declaration

• To implement a function, we first declare its prototype:

• In a function prototype, we declare its appearance and input/output format.

• The name of the function follows the same rule for naming variable.

• A list of (zero, one, or multiple) parameters:

– The parameters passed into the function with their types.

– We must declare their types. Declaring their names are optional.

• A return type indicates the type of the function return value.

return type function name(parameter types);

int add(int, int);

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 8 / 58

Function declaration

• Some examples of function prototype:

– A function receives two integers

and returns an integer.

– The parameter names may provide

“hints” to what this function does.

– A function receives two
double and returns one

double.

• For a function declaration, the semicolon is required.

• Every type can be the return type.

– It may be “void” if the function returns nothing.

int add(int num1, int num2);

int add(int, int);

double divide(double, double);

double divide(double num, double den);

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 9 / 58

Creating a function

• Declare the function before using it.

– Typically after the preprocessors and before the main function.

• Then we need to define the function by writing the function body.

– Typically after the main function, though not required.

• In a function definition, we need to specify

parameter names.

• These parameters can be viewed as

variables declared inside the function.

– They can be accessed only in the function.

int add(int num1, int num2)

{

return num1 + num2;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 10 / 58

Function definition

• You have written one function: the main function.

• Defining other functions can be done in the same way.

– The first line, the function header, is almost

identical to the prototype.

– The parameter names must be specified.

– Statements are then written for a specific task.

• The keyword return terminates the function execution and returns a value.

return type function name(parameters)

{

statements

}

int add(int num1, int num2)

{

return num1 + num2;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 11 / 58

Function invocation

• When a function is invoked in the

main function, the program execution

jumps to the function.

• After the function execution is

complete, the program execution

jumps back to the main function,

exactly where the function is called.

• What if another function is called in a

function?

(Start)

The main

program

(End)

Function 1

Function 2

Function 3

Function 1

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 12 / 58

Function invocation
int add(int, int);

void test(int);

int main()

{

int c = add(10, 20);

cout << c << "\n";

return 0;

}

int add(int num1, int num2)

{

test(num1);

return num1 + num2;

}

void test (int toPrint)

{

cout << toPrint << "\n";

}

The main

program

add test

10, 20

30

10

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 13 / 58

Function declaration and definition

• You may choose to define a

function before the main function.

– In this case, the function

prototype can be omitted.

• In any case, you must declare a

function before you use it.

int add(int num1, int num2)

{

return num1 + num2;

}

int main()

{

// fine!

int c = add(10, 20);

cout << c << "\n";

return 0;

}

void a()

{

// error!

b();

}

void b()

{

;

}

int main()

{

a();

b();

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 14 / 58

Function declaration and definition

• In some cases, function prototypes must be used.

– Direct or indirect self-invocations are called recursion (a topic to be

discussed in the next lecture).

• Using function prototypes also enhances communications and maintenance.

void a();

void b();

int main ()

{

a();

b();

return 0;

}

void a()

{

// fine!

b();

}

void b()

{

a();

}

void a()

{

// error!

b();

}

void b()

{

a();

}

int main ()

{

a();

b();

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 15 / 58

Function parameters vs. arguments

• When we invoke a function, we need to

provide arguments.

– Parameters (also called formal

parameters) are used inside the function.

– Arguments (also called actual

parameters) are passed into the function.

– If a pair of parameter and argument are

both variables, their names can be

different.

• Let’s visualize the memory events.

int add(int num1, int num2)

{

return num1 + num2;

}

int main()

{

double q1 = 10.5;

double q2 = 20.7;

double c = add(q1, q2 - 3);

cout << c << "\n";

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 16 / 58

Function arguments

• Function arguments can be:

– Literals.

– Variables.

– Constant variables.

– Expressions.

• If an argument’s type is different from

the corresponding parameter’s type,

compiler will try to cast it.

int add(int, int);

int main()

{

const int C = 5;

double d = 1.6;

cout << add(10, 20) << "\n";

cout << add(C, d) << "\n";

cout << add(10 * C, 20) << "\n";

return 0;

}

int add(int num1, int num2)

{

return num1 + num2;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 17 / 58

Function return value

• We can return one or no value back to where we invoke the function.

• Use the return statement to return a value.

• If you do not want to return anything, declare the function return type as void.

– In this case, the return statement can be omitted.

– Or we may write return;.

– Otherwise, having no return statement results in a compilation error.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 18 / 58

Function return value

• There can be multiple
return statements.

• A function runs until the first

return statement is met.

– Or the end of the

function for a function
returning void.

• We need to ensure that at

least one return will be

executed!

int max(int a, int b)

{

if(a > b)

return a;

else

return b;

}

int test(int);

int main()

{

cout << test(-1);

return 0;

}

int test(int a)

{

if(a > 0)

return 5;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 19 / 58

Coupling and decoupling

• What do these two functions do?

• Which one to choose?

• General rule: Minimize the degree of coupling in your program.

– Decouple your program with appropriate functions.

int factorial(int n)

{

int ans = 1;

for(int a = 1; a <= n; a++)

ans *= a; // ans = ans * a;

return ans;

}

void factorial(int n)

{

int ans = 1;

for(int a = 1; a <= n; a++)

ans *= a; // ans = ans * a;

cout << ans;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 20 / 58

Good programming style

• Name a function so that its purpose is clear.

• In a function, name a parameter so that its purpose is clear.

• Declare all functions with comments.

– Ideally, other programmers can understand what a function does without

reading the definition.

• Declare all functions at the beginning of the program.

• Decouple your program with appropriate functions.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 21 / 58

Outline

• Basics of functions

• More about return values

• Scope of variables revisited

• Advances of functions

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 22 / 58

return statements in a void function

• In a void function, there is no need for a return statement.

– One may still add some if they help.

• Consider the following example:

– Given an input integer, write a program that prints out its digits, from the

least significant to the most significant.

– Print out nothing if the input number is negative.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 23 / 58

Implementation with no return

• This function works:

void reversePrint(int i)

{

if(i >= 0)

{

while(i > 0)

{

cout << i % 10;

i /= 10;

}

}

}

#include<iostream>

using namespace std;

void reversePrint(int);

int main()

{

int i = 0;

cin >> i;

reversePrint(i);

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 24 / 58

Implementation with return

• This function also works:

• Adding returnmay improve readability and/or highlight some parts.

#include<iostream>

using namespace std;

void reversePrint(int);

int main()

{

int i = 0;

cin >> i;

reversePrint(i);

return 0;

}

void reversePrint(int i)

{

if(i < 0)

return;

while(i > 0)

{

cout << i % 10;

i /= 10;

}

return;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 25 / 58

Operators also return value

• An operator can also be viewed as a function.

– They take operand(s) as input(s), process them, and return a value.

– E.g., + returns the sum of the two operands.

– The return value of an operator can be very useful.

• cin >> and cout << also have return values.

– Let’s consider cin >> as an example. What is the return type?

– http://www.cplusplus.com/reference/istream/istream/operator%3E%3E/

– istream& is an input stream; &will be explained in the future.

• Though istream& is hard to understand, it is not too hard to use it.

– Let’s see how to use the return value of cin >> to make better programs.

Basics of functions More about return values

Scope of variables revisited Advances of functions

http://www.cplusplus.com/reference/istream/istream/operator>>/

Ling-Chieh Kung (NTU IM)Programming Design – Functions 26 / 58

Utilizing the return value of cin >>

• Consider this simple program:

– The user may keep entering values until she enters

a negative number.

– The sum of all numbers except the negative one

will be printed.

– The number of input values is unlimited.

• We may let our program read input from a file.

– In MS Windows, use the “<” operator in “cmd”.

• May we remove the setting of using a negative number

as the ending signal?

int main()

{

int sum = 0;

int i = 0;

cin >> i;

while(i >= 0)

{

sum += i;

cin >> i;

}

cout << sum;

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 27 / 58

Utilizing the return value of cin >>

• The modified program is:

• The input stream returned by cin >> can be evaluated.

– If nothing is read in this operation, evaluating the

input stream will result in a false value.

– The loop can then be terminated.

• This works when we read input from a file.

– If the user enters numbers through a keyboard, the

input stream will not end. This will of course fail.

int main()

{

int sum = 0;

int i = 0;

while(cin >> i)

{

sum += i;

}

cout << sum;

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 28 / 58

Utilizing the return value of cin >>

• The program may be modified in this

way (only for illustration purpose):

– is is an istream& object.

– It can be cast to a Boolean variable.

– If there is nothing in the input

stream, the Boolean value will be

false.

int main()

{

int sum = 0;

int i = 0;

istream& is = (cin >> i);

bool b = static_cast<bool>(is);

while(b)

{

sum += i;

b = (cin >> i);

}

cout << sum;

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 29 / 58

Utilizing the return value of cin >>

• Suppose the following problem exists in

your homework:

– In the input file, there are n + 1

integers, separated by white spaces.

– The first integer is n.

– Your program should print out the

sum of the last n integers.

• A correct program is here:

int main()

{

int n = 0;

int sum = 0;

cin >> n;

for(int i = 0; i < n; i++)

{

int i = 0;

cin >> i;

sum += i;

}

cout << sum;

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 30 / 58

Utilizing the return value of cin >>

• Suppose the following problem exists in

your homework:

– In the input file, there are n integers,

separated by white spaces.

– Your program should print out the

sum of the n integers.

• A correct program is here (exactly the

one presented three slides ago):

int main()

{

int sum = 0;

int i = 0;

while(cin >> i)

{

sum += i;

}

cout << sum;

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 31 / 58

Outline

• Basics of functions

• More about return values

• Scope of variables revisited

• Advances of functions

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 32 / 58

Variable lifetime

• Four levels of variable lifetime (life scope) in C++ can be discussed now.

– Local, global, external, and static variables.

• We’ll discuss more types of variables in this semester.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 33 / 58

Local variables

• A local variable is declared in a block.

– It lives from the declaration to the end of block.

• In the block, it will hide other variables with same name.

int main()

{

int i = 50; // it will be hidden

for(int i = 0; i < 20; i++)

{

cout << i << " "; // print 0 1 2 ... 19

}

cout << i << "\n"; // 50

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 34 / 58

Global variables

• A global variable is declared outside any block

(thus outside the main function)

– From declaration to the end of the program.

– It will be hidden by any local variable with

the same name.

– To access a global variable, use the scope
resolution operator ::.

• There’s no difference in the way you declare a

local or global variable. The locations matter.

• We may add auto to declare a local or global

variable, but since it is the default setting, almost

no one adds this.

#include <iostream>

using namespace std;

int i = 5;

int main()

{

for(; i < 20; i++)

cout << i << " "; // ?

cout << "\n";

int i = 2;

cout << i << "\n"; // ?

cout << ::i << "\n"; // ?

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 35 / 58

External variables

• In a large-scale system, many programs run together.

• If a program wants to access a variable defined in another program, it can
declare the variable with the keyword extern.

– extern int a;

– a must has been defined in another program.

– These programs must run together.

• You will not need this now… actually you should try to avoid it.

– It hurts modularization and makes the system hard to maintain.

– Though it still exists in some old systems (e.g., some BBS sites).

• Note that global variables should also be avoided for the same reason.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 36 / 58

Static variables

• Consider local and global variables again.

– A local variable will be recycled (its memory space will be released)

immediately when it is “dead.”

– A global variable will not be recycled until the end of a program.

• A static variable, declared inside a block, also will not be recycled until the

program terminates.

– Once a static variable is declared, the declaration statement will not be

executed anymore even if it is encountered again.

– A static global variable cannot be declared as external in other programs.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 37 / 58

• One typical reason: To count the number of times that a function is invoked.

– Why not using a global variable for that?

Static variables

int test();

int main()

{

for(int a = 0; a < 10; a++)

cout << test() << " ";

return 0; // 1, 1, ..., 1

}

int test()

{

int a = 0;

a++;

return a;

}

int test();

int main()

{

for(int a = 0; a < 10; a++)

cout << test() << " ";

return 0; // ?

}

int test()

{

static int a = 0;

a++;

return a;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 38 / 58

Good programming style

• You have to distinguish between local and global variables.

– The location of declarations matters.

• Always try to use local variables to replace global variables.

– Let functions communicate by passing values with each other. Do not let

them communicate by reading from and writing into the same variables.

– One particular reason to use global variables is to define constants that are

used by many functions.

• You may not need static and external variables now or even in the future.

• But you need to know these things exist.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 39 / 58

Variable initialization

• We have learned that (local) variables are

not initialized automatically.

– It is troublesome for a programmer to

initialize (local) variables.

– Why is the system so lazy?

• In fact, the system initializes global and

static variables to 0. Why?

• Initialization takes time.

– There are too many local variables.

– There are typically few global and static

variables. Efficiency matters.

int aaa[1000];

int test();

int main()

{

for(int i = 0; i < 1000; i++)

cout << aaa[i] << " ";

for(int a = 0; a < 10; a++)

cout << test() << " ";

return 0;

}

int test()

{

static int a;

a++;

return a;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 40 / 58

Outline

• Basics of functions

• More about return values

• Scope of variables revisited

• Advances of functions

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 41 / 58

Call-by-value mechanism (1/3)

• Consider the example program.

• Is the result strange?

void swap(int x, int y);

int main()

{

int a = 10, b = 20;

cout << a << " " << b << "\n";

swap(a, b);

cout << a << " " << b << "\n";

}

void swap(int x, int y)

{

int temp = x;

x = y;

y = temp;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 42 / 58

Call-by-value mechanism (2/3)

• The default way of invoking a function is the “call-

by-value” (pass-by-value) mechanism.

• When the function swap() is invoked:

– First two new variables
x and y are created.

– The values of a and b

are copied into x and y.

– The values of x and y

are swapped.

– The function ends, x and y are destroyed, and

memory spaces are released.

Address Identifier Value

- a 10

- b 20

Memory

- x

- y

- x 10

- y 20

- x 20

- y 10
void swap (int x, int y) {

int temp = x;

x = y;

y = temp;

}

int main() {

int a = 10, b = 20;

swap(a, b);

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 43 / 58

Call-by-value mechanism (3/3)

• The call-by-value mechanism is adopted so that:

– Functions can be written as independent entities.

– Modifying parameter values do not affect any other functions.

• Work division becomes easier and program modularity can also be enhanced.

– Otherwise one cannot predict how her program will run without knowing

how her teammates implement some functions.

• In some situations, however, we do need a callee to modify the values of some

variables defined in the caller.

– We may “call by reference” (to be introduced later in this semester).

– Or we may pass an array to a function.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 44 / 58

Passing an array as an argument (1/4)

• An array can also be passed into a function.

– Declaration: need a [].

– Invocation: use the array name.

– Definition: need a [] and a name for

that array in the function.

• We do not need to indicate the size of the

array.

– An array variable stores an address.

– “Passing an array” is actually telling

the function where to access the array.

void printArray(int [], int);

int main()

{

int num[5] = {1, 2, 3, 4, 5};

printArray(num, 5);

return 0;

}

void printArray(int a[], int len)

{

for (int i = 0; i < len; i++)

cout << a[i] << " ";

cout << "\n";

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 45 / 58

Passing an array as an argument (2/4)

• When an array is modified in a callee, the

caller also sees it modified!

• Why?

– Passing an array is passing an

address.

– The callee modifies whatever

contained in those addresses.

• Let’s visualize the memory events.

void shiftArray(int [], int);

int main()

{

int num[5] = {1, 2, 3, 4, 5};

shiftArray(num, 5);

for(int i = 0; i < 5; i++)

cout << num[i] << " ";

return 0;

}

void shiftArray(int a[], int len)

{

int temp = a[0];

for(int i = 0; i < len - 1; i++)

a[i] = a[i + 1];

a[len - 1] = temp;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 46 / 58

Passing an array as an argument (3/4)

• It is fine if we indicate the array size.

– But no new memory space will be

allocated accordingly.

– That number will just be ignored.

– They can even be inconsistent.

void printArray(int [5], int);

int main()

{

int num[5] = {1, 2, 3, 4, 5};

printArray(num, 5);

return 0;

}

void printArray(int a[3], int len)

{

for (int i = 0; i < len; i++)

cout << a[i] << " ";

cout << "\n";

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 47 / 58

Passing an array as an argument (4/4)

• We may also pass multi-

dimensional arrays.

– The kth-dimensional array

size must be specified for

all 𝑘 ≥ 2!

– Just like when we declare a

multi-dimensional array.

• Now they must be consistent.

void printArray(int [][2], int);

int main()

{

int num[5][2] = {1, 2, 3, 4, 5}; // five 0s

printArray(num, 5);

return 0;

}

void printArray(int a[][2], int len)

{

for(int i = 0; i < len; i++)

{

for(int j = 0; j < 2; j++)

cout << a[i][j] << " ";

cout << "\n";

}

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 48 / 58

Constant parameters (1/3)

• In many cases, we do not want a parameter to be modified inside a function.

• For example, consider the factorial function:

• There is no reason for the parameter n to be modified.

– You know this, but how to prevent other programmer from doing so?

int factorial(int n)

{

int ans = 1;

for(int a = 1; a <= n; a++)

ans *= a;

return ans;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 49 / 58

Constant parameters (2/3)

• We may declare a parameter as a constant parameter:

• Once we do so, if we assign any value to n, there will be a compilation error.

• The argument passed into a constant parameter can be a non-constant variable.

– Only the value matters.

int factorial(const int n)

{

int ans = 1;

for(int a = 1; a <= n; a++)

ans *= a;

return ans;

}

int main()

{

int n = 0;

cin >> n;

cout << factorial(n); // as usual

return 0;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 50 / 58

Constant parameters (3/3)

• Sometimes an argument’s value in a

caller may be modified in a callee.

– E.g., arrays.

• If these arguments should not be

modified in a callee, it is good to

protect them.

void printArray(const int [5], int);

int main()

{

int num[5] = {1, 2, 3, 4, 5};

printArray(num, 5);

return 0;

}

void printArray(const int a[5], int len)

{

for(int i = 0; i < len; i++)

cout << a[i] << " ";

cout << "\n";

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 51 / 58

Function overloading (1/4)

• There is a function calculating xy:

– int pow(int base, int exp);

• Suppose we want to calculate xy where y may be fractional:

– double powExpDouble(int base, double exp);

• What if we want more?

– double powBaseDouble(double base, int exp);

– double powBothDouble(double base, double exp);

• We may need a lot of powXXX() functions, each for a different parameter set.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 52 / 58

Function overloading (2/4)

• To make programming easier, C++ provides function overloading.

• We can define many functions having the same name if their parameters are not

the same.

• So we do not need to memorize a lot of function names.

– int pow(int, int);

– double pow(int, double);

– double pow(double, int);

– double pow(double, double);

• Almost all functions in the C++ standard library are overloaded, so we can use

them conveniently.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 53 / 58

Function overloading (3/4)

• Different functions must have different function signatures.

– This allows the computer to know which function to call.

• A function signature includes

– Function name.

– Function parameters (number of parameters and their types).

• A function signature does not include return type! Why?

• When we define two functions with the same name, we say that they are

overloaded functions. They must have different parameters:

– Numbers of parameters are different.

– Or at least one pair of corresponding parameters have different types.

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 54 / 58

Function overloading (4/4)

• Here are two functions:

– void print(char c, int num);

– void print(char c);

• print() can print c for num times. If

no num is assigned, print a single c.

void print(char c, int num)

{

for(int i = 0; i < num; i++)

cout << c;

}

void print(char c)

{

cout << c;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 55 / 58

Default arguments (1/2)

• In the previous example, it is identical to give num a default value 1.

• In general, we may assign default values for some parameters in a function.

• As an example, consider the following function that calculates a circle area:

• When we call it, we may use circleArea(5.5, 3.1416), which will assign

3.1416 to pi, or circleArea(5.5), which uses 3.14 as pi.

double circleArea(double, double = 3.14);

// ...

double circleArea(double radius, double pi)

{

return radius * radius * pi;

}

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 56 / 58

Default arguments (2/2)

• Default arguments must be assigned before the function is called.

– In a function declaration or a function definition.

• Default arguments must be assigned just once.

• You can have as many parameters using default values as you want.

• However, parameters with default values must be put behind (to the right of)

those without a default value.

– Once we use the default value of one argument, we need to use the default

values for all the following arguments.

• How to choose between function overloading and default arguments?

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 57 / 58

Inline functions (1/2)

• When we call a function, the system needs to do a lot of works.

– Allocating memory spaces for parameters.

– Copying and passing values as arguments.

– Record where we are in the caller.

– Pass the program execution to the callee.

– After the function ends, destroy all the local variables and get back to the

calling function.

• When there are a lot of function invocations, the program will take a lot of time

doing the above switching tasks. It then becomes slow.

• How to save some time?

Basics of functions More about return values

Scope of variables revisited Advances of functions

Ling-Chieh Kung (NTU IM)Programming Design – Functions 58 / 58

Inline functions (2/2)

• In C++ (and some other modern languages), we may define inline functions.

• To do so, simply put the keyword inline in front of the function name in a

function prototype or header.

• When the compiler finds an inline function, it will replace the invocation by the

function statements.

– The function thus does not exist!

– Statements will be put in the caller and executed directly.

• While this saves some time, it also expands the program size.

• In most cases, programmers do not use inline functions.

Basics of functions More about return values

Scope of variables revisited Advances of functions

