
Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 1 / 43

Programming Design

Algorithms and Recursion

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 2 / 43

Outline

• Algorithms and complexity

• Recursion

• Searching and sorting

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 3 / 43

Introduction

• It is said that:

– Programming = Data structure + Algorithms.

– http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Progr

ams

– To design a program, choose data structures to store your data and choose

algorithms to process your data.

• Each of “data structures” and “algorithms” requires one (or more) courses.

– We will only give you very basic ideas.

Algorithms and complexity Recursion Searching and sorting

http://en.wikipedia.org/wiki/Algorithms_+_Data_Structures_=_Programs

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 4 / 43

Algorithms

• Today we talk about algorithms, collections of steps for completing a task.

– In general, an algorithm is used to solve a problem.

– The most common strategy is to divide a problem into small pieces and then

solve those subproblems.

– We will introduce recursion, a way to solve a problem based on the

solution/outcome of subproblems.

• For a problem, there may be multiple algorithms.

– The first criterion, of course, is correctness.

– Time complexity is typically the next for judging correct algorithms.

• As examples, we introduce two specific problems: searching and sorting.

• Let’s watch a video!

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 5 / 43

Example: listing all prime numbers

• Given an integer n, let’s list all the prime numbers no greater than n.

• Consider the following (imprecise) algorithm:

– For each number i no greater than n, check whether it is a prime number.

• To check whether i is a prime number:

– Idea: If any number j < i can divide i, i is not a prime number.

– Algorithm: For each number j < i, check whether j divides i. If there is any

j that divides i, report no; otherwise, report yes.

• Before we write a program, we typically prefer to formalize our algorithm.

– We write pseudocodes, a description of steps in words organized in a

program structure.

– This allows us to ignore the details of implementations.

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 6 / 43

Example: listing all prime numbers

• One pseudocode for listing all prime

numbers no greater than n is:

• Once we have described an algorithm in pseudocodes, implementation is easy.

Given an integer n:
for i from 2 to n

assume that i is a prime number
for j from 2 to i – 1

if j divides i
set i to be a composite number

if i is still considered as prime
print i

• Implementation:

for(int i = 2; i <= n; i++) {

bool isPrime = true;

for(int j = 2; j < i; j++) {

if(i % j == 0) {

isPrime = false;

break;

}

}

if(isPrime == true)

cout << i << " ";

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 7 / 43

A full implementation

• Let’s modularize our implementation:

– isPrime(int x) determines whether

the given integer x is a prime number.

• Now we have a correct algorithm.

– May we improve this algorithm?

#include <iostream>

using namespace std;

bool isPrime(int x);

int main()

{

int n = 0;

cin >> n;

for(int i = 2; i <= n; i++)

{

if(isPrime(i) == true)

cout << i << " ";

}

return 0;

}

bool isPrime(int x)

{

for(int i = 2; i < x; i++)

{

if(x % i == 0)

return false;

}

return true;

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 8 / 43

Improving our algorithm

• The algorithm can be faster:

– Do not use i <= sqrt(x) (why?).

– We improved the algorithm, not the

implementation.

• May we do even better?

#include <iostream>

using namespace std;

bool isPrime(int x);

int main()

{

int n = 0;

cin >> n;

for(int i = 2; i <= n; i++)

{

if(isPrime(i) == true)

cout << i << " ";

}

return 0;

}

bool isPrime(int x)

{

for(int i = 2; i * i <= x; i++)

{

if(x % i == 0)

return false;

}

return true;

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 9 / 43

Improving our algorithm further

• Let’s consider a completely different algorithm:

– Let’s start from 2. Actually 2, 4, 6, 8, … are all composite numbers.

– For 3, actually 3, 6, 9, … are all composite numbers.

– We may use a bottom-up approach to eliminate composite numbers.

• The pseudocode (with comments):

Given a Boolean array A of length n
Initialize all elements in A to be true // assuming prime
for i from 2 to n

if Ai is true
print i
for j from 1 to ⌊ ൗ𝑖 𝑗⌋ // eliminating composite numbers

Set A[𝑖 × 𝑗] to false

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 10 / 43

Improving our algorithm further

for(int i = 2; i <= n; i++)

{

if(isPrime[i] == true)

{

cout << i << " ";

ruleOutPrime(i, isPrime, n);

}

}

return 0;

}

void ruleOutPrime

(int x, bool isPrime[], int n)

{

for(int i = 1; x * i < n; i++)

isPrime[x * i] = false;

}

#include <iostream>

using namespace std;

const int MAX_LEN = 10000;

void ruleOutPrime

(int x, bool isPrime[], int n);

int main()

{

int n = 0;

cin >> n; // must < 10000

bool isPrime[MAX_LEN] = {0};

for(int i = 0; i < n; i++)

isPrime[i] = true;

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 11 / 43

Complexity

• When all the three algorithms are

correct, they are not equally

efficient.

• We typically care about the

complexity of an algorithm:

– Time complexity: the running

time of an algorithm.

– Space complexity: the amount

of spaces used by an algorithm.

– Time is typically more critical.

• Algorithm 2 is much faster!

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 12 / 43

Complexity

• Running time may be affected by the hardware, number of programs running at

the same time, etc.

– The number of basic operations is a better measurement.

– Basic operations include simple arithmetic, comparisons, etc.

• Convince yourself that algorithm 2 does fewer basic operations.

• The calculation of complexity needs training.

– This will be formally introduced in Discrete Mathematics, Data Structures,

and/or Algorithms.

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 13 / 43

Outline

• Algorithms and complexity

• Recursion

• Searching and sorting

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 14 / 43

Recursive functions

• A function is recursive if it invokes itself (directly or indirectly).

• The process of using recursive functions is called recursion.

• Why recursion?

– Many problems can be solved by dividing the original problem into one or

several smaller pieces of subproblems.

– Typically subproblems are quite similar to the original problem.

– With recursion, we write one function to solve the problem by using the

same function to solve subproblems.

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 15 / 43

Example 1: finding the maximum

• Suppose that we want to find the maximum number in an array A[1..n] (which

means A is of size n).

– Is there any subproblem whose solution can be utilitzed?

– Subproblem: Finding the maximum in an array with size smaller than n.

• A strategy:

– Subtask 1: First find the maximum of A[1..(n – 1)].

– Subtask 2: Then compare that with A[n].

• How would you visualize this strategy?

• While subtask 2 is simple, subtask 1 is similar to the original task.

– It can be solved with the same strategy!

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 16 / 43

Example 1: finding the maximum

• Let’s try to implement the strategy.

• First, I know I need to write a function whose header is:

– This function returns the maximum in array (containing len elements).

– I want this to happen, though at this moment I do not know how.

• Now let’s implement it:

– If the function really works, subtask 1 can be completed by invoking

– Subtask 2 is done by comparing subMax and array[len - 1].

double max(double array[], int len);

double subMax = max(array, len - 1);

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 17 / 43

Example 1: finding the maximum

• A (wrong) implementation:

• What will happen if we really

invoke this function?

– The program will not terminate!

– Even when len is 1 in an

invocation, we will still try to
invoke max(array, 0).

• For an array whose size is 1:

– That number is the maximum!

• With this, we can add a stopping

condition into our function.

double max(double array[], int len)

{

double subMax = max(array, len - 1);

if(array[len - 1] > subMax)

return array[len - 1];

else

return subMax;

}

int main()

{

double a[5] = {5, 7, 2, 4, 3};

cout << max(a, 5);

return 0;

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 18 / 43

• A correct implementation is:

• What is the outcome?

• Both else can be removed. Why?

Example 1: finding the maximum

double max(double array[], int len)

{

if(len == 1) // stopping condition

return array[0];

else

{

// recursive call

double subMax = max (array, len - 1);

if (array[len - 1] > subMax)

return array[len - 1];

else

return subMax;

}

}

int main()

{

double a[5] = {5, 7, 2, 4, 3};

cout << max(a, 5);

return 0;

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 19 / 43

• Is it okay to remove both else? Why?

Example 1: finding the maximum

double max(double array[], int len)

{

if(len == 1) // stopping condition

return array[0];

else

{

// recursive call

double subMax = max (array, len - 1);

if(array[len - 1] > subMax)

return array[len - 1];

else

return subMax;

}

}

double max(double array[], int len)

{

if(len == 1) // stopping condition

return array[0];

// recursive call

double subMax = max (array, len - 1);

if(array[len - 1] > subMax)

return array[len - 1];

return subMax;

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 20 / 43

Example 2: computing factorials

• How to write a function that computes the factorial of n?

– A subproblem: computing the factorial of n – 1.

– A strategy: First calculate the factorial of n – 1, then multiply it with n.

int factorial(int n)

{

if(n == 1) // stopping condition

return 1;

else

// recursive call

return factorial(n - 1) * n;

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 21 / 43

Example 2: computing factorials

• When we invoke this function with argument 4:

• factorial(4)

= factorial(3) * 4

= (factorial(2) * 3) * 4

= ((factorial(1) * 2) * 3) * 4

= ((1 * 2) * 3) * 4

= (2 * 3) * 4

= 6 * 4

= 24

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 22 / 43

Example 3: the Fibonacci sequence

• Write a recursive function to find the nth Fibonacci number.

– The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, …. Each number is the

sum of the two proceeding numbers.

– The nth value can be found once we know the (n – 1)th and (n – 2)th values.

int fib(int n)

{

if(n == 1)

return 1;

else if(n == 2)

return 1;

else // two recursive calls

return (fib(n - 1) + fib(n - 2));

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 23 / 43

Some remarks

• There must be a stopping condition in a recursive function. Otherwise, the

program will not terminate.

• In many cases, a recursive strategy can also be implemented with loops.

– E.g., writing a loop for finding a maximum and factorial.

– But sometimes it is hard to use loops to imitate a recursive function.

• Compared with an equivalent iterative function, a recursive implementation is

usually simpler and easier to understand.

• However, it generally uses more memory spaces and is more time-consuming.

– Invoking functions has some cost.

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 24 / 43

Complexity issue of recursion

• In some cases, recursion is efficient enough.

– E.g., finding a maximum or calculating the factorial.

• In some cases, however, recursion can be very inefficient!

– E.g., Fibonacci.

• Let’s compare the efficiency of two different implementations.

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 25 / 43

Complexity issue of recursion

• Two implementations: double fibRepetitive(int n)

{

if(n == 1 || n == 2)

return 1;

int fib1 = 1, fib2 = 1;

int fib3 = 0;

for(int i = 2; i < n; i++)

{

fib3 = fib1 + fib2;

fib1 = fib2;

fib2 = fib3;

}

return fib3;

}

int fib(int n)

{

if(n == 1)

return 1;

else if(n == 2)

return 1;

else // two recursive calls

return (fib(n-1) + fib(n-2));

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 26 / 43

Complexity issue of recursion

• Which one is faster?

int main()

{

int n = 0;

cin >> n;

cout << fibRepetitive(n) << "\n"; // algorithm 1

cout << fib(n) << "\n"; // algorithm 2

return 0;

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 27 / 43

Polynomial time vs. exponential time

• Given n:

– The repetitive way has around c1n steps, where c1 > 0 is a constant.

– The recursive way has around c22
n steps, where c2 > 0 is a constant.

• When n is large enough, c22
n is much larger than c1n.

– Even if c1 << c2!

– We say the repetitive way is more efficient.

• Technically, we say that:

– The repetitive way is a polynomial-time algorithm

– The recursive way is an exponential-time algorithm.

• In general, an exponential-time algorithm is just too inefficient.

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 28 / 43

Power of recursion

• Though recursion is sometimes inefficient, typically implementation is easier.

• Let’s consider the classic example “Hanoi Tower”.

– There are three pillars and disks of different sizes which can slide onto any

pillar. Disc i is smaller than disc j if i < j.

– A large disc cannot be placed on top of a small disc.

• Initially, all discs are at pillar A. We want to move them to pillar C:

– Only one disk can be moved at a time.

– Each move consists of taking the upper disk from one of the stacks and

placing it on top of another stack.

• Let’s watch a video!

• What are the steps that solve the Hanoi Tower problem in the fastest way?

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 29 / 43

A recursive implementation

• Is there a good way of solving the Hanoi Tower problem iteratively?

void hanoi(char from, char via,

char to, int disc)

{

if(disc == 1)

cout << "From " << from

<< " to " << to << "\n";

else

{

hanoi(from, to, via, disc - 1);

cout << "From " << from

<< " to " << to << "\n";

hanoi(via, from, to, disc - 1);

}

}

#include <iostream>

using namespace std;

int main()

{

int disc = 0; // number of discs

cin >> disc;

char a = 'A', b = 'B', c = 'C';

hanoi(a, b, c, disc);

return 0;

}

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 30 / 43

Outline

• Algorithms and complexity

• Recursion

• Searching and sorting

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 31 / 43

Searching

• One fundamental task in computation is to search for an element.

– We want to determine whether an element exists in a set.

– If yes, we want to locate that element.

– E.g., looking for a string in an article.

• Here we will discuss how to search for an integer in an one-dimensional array.

• Whether the array is sorted makes a big difference.

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 32 / 43

Searching

• Consider an integer array A[1..n] and an integer p.

• How to determine whether p exists in A?

• If so, where is it?

– Assume that we only need to find one p even if there are multiple.

• Suppose that the array is unsorted.

• One of the most straightforward way is to apply a linear search.

– Compare each element with p one by one, from the first to the last.

– Whenever we find a match, report its location.

– Conclude that p does not exist if we end up with nothing.

• The number of operations we need to execute is roughly proportional to n.

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 33 / 43

Binary search

• What if the array is sorted?

• We may still apply the linear search.

• However, we may improve the efficiency by implementing a binary search.

– First, we compare p with the median m (e.g., A[(n + 1) / 2] if n is odd).

– If p equals m, bingo!

– If p < m, we know p must exist in the first half of A if it exists.

– If p > m, we know p must exist in the second half of A if it exists.

– For the latter two cases, we will continue searching in the subarray.

• Let’s watch a video!

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 34 / 43

Binary search: pseudocode

binarySearch(a sorted array A, search in between from and to, search for p)

if n = 1

return true if Afrom = p; return false otherwise

else

let median be floor((from + to) / 2)

if p = Amedian

return true

else if p < Amedian

return binarySearch(A, from, median, p)

else

return binarySearch(A, median + 1, to, p)

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 35 / 43

Linear search vs. binary search

• In binary search, the number of instructions to be executed is roughly

proportional to log2 n.

• So binary search is much more efficient than linear search!

– The difference is huge is the array is large.

– However, binary search is possible only if the array is sorted.

– Is it worthwhile to sort an array before we search it?

• It is natural to implement binary search with recursion.

– A subproblem is to search for the element in one half of the array.

• Binary search can also be implemented with repetition.

– Is it natural to do so?

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 36 / 43

Sorting

• Given a one-dimensional integer array A of size n, how to sort it?

• Given numbers 6, 9, 3, 4, and 7, how would you sort them?

• Recall what you typically do when you play poker:

– First put the first number 6 aside.

– Compare the second number 9 with 6. Because 9 > 6, put 9 to the right of 6.

– Compare the third number 3 with the sorted list (6, 9). Because 3 < 6, put 3

to the left of 6.

– Compare 4 with (3, 6, 9). Because 3 < 4 < 6, insert 4 in between 3 and 6.

– Compare 7 with (3, 4, 6, 9). Because 6 < 7 < 9, insert 7 in between 6 and 9.

– The result is (3, 4, 6, 7, 9).

• Let’s watch a video!

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 37 / 43

Insertion sort

• The above algorithm is called insertion sort.

– The key is to maintain a sorted list.

– Then for each number in the unsorted list, insert it into the proper location

so that the sorted list remains sorted.

• How would you implement the insertion sort?

– Recursion or repetition?

– If recursion, what is your strategy?

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 38 / 43

(Non-repetitive) insertion sort

• The pseudocode:

• What if A is repetitive?

insertionSort(a non-repetitive array A, the array length n, an index cutoff < n)

// at any time, A1..cutoff is sorted and A(cutoff + 1)..n is unsorted

if Acutoff + 1 < A1..cutoff

let p be 1

else

find p such that Ap – 1 < Acutoff + 1 < Ap

insert Acutoff + 1 to Ap and shift Ap..cutoff to A(p + 1)..(cutoff + 1)

if cutoff + 1 < n

insertionSort(A, n, cutoff + 1)

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 39 / 43

Insertion sort

• Roughly how many instructions do we need for insertion sort?

– We need to do n insertions.

– To insert the kth value, we search for a position and shift some elements.

• A linear search: at most k comparisons.

• Shifting: at most k shifts.

– Roughly we need 1 + 2 + … + n operations, which is proportional to n2.

• Does binary search help?

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 40 / 43

Mergesort (Merge sort)

• Insertion sort is simple and fast!

– Not really “fast”, but faster than many similar sorting algorithm.

– Because its idea and implementation is simple, it is faster than most

algorithms when the array size is small.

• Interestingly, there is another sorting algorithm:

– Its idea is somewhat similar to insertion sort.

– But it is significantly faster for large arrays!

• This algorithm is called mergesort.

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 41 / 43

Mergesort (Merge sort)

• Recall that in an insertion sort, we need to insert one number into a sorted list

for many times.

• A key observation is that “inserting” another sorted list of size k into a sorted

list can be faster than inserting k separate numbers one by one!

– So such “inserting” is actually “merging”.

• Given an unsorted array, we will:

– First split the array into two parts, the first half and second half.

– Then sort each subarray.

– Finally, merge these two subarrays.

• Mergesort is perfect for recursion!

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 42 / 43

Mergesort (Merge sort): pseudocode

mergeSort(an array A, the array length n)

let median be floor((1 + n) / 2)

mergeSort(A1..median, median) // now A1..median is sorted

mergeSort(A(median + 1)..n, n – median + 1) // now A(median + 1)..n is sorted

merge A1..median and A(median + 1)..n // how?

Algorithms and complexity Recursion Searching and sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 43 / 43

Mergesort (Merge sort)

• Interestingly, insertion sort is a special way of running mergesort.

– Not splitting the array into two halves.

– Instead, splitting it into A[1..n – 1] and A[n].

• Once we use the “smart split”, the efficiency is improved a lot!

– Insertion sort: Roughly proportional to n2.

– Merge sort: Roughly proportional to n log n.

• A simple observation can make a huge difference!

Algorithms and complexity Recursion Searching and sorting

