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Introduction

• It is said that:

– Programming = Data structure + Algorithms. 

– http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Progr

ams

– To design a program, choose data structures to store your data and choose 

algorithms to process your data.  

• Each of “data structures” and “algorithms” requires one (or more) courses. 

– We will only give you very basic ideas.  
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Algorithms

• Today we talk about algorithms, collections of steps for completing a task. 

– In general, an algorithm is used to solve a problem. 

– The most common strategy is to divide a problem into small pieces and then 

solve those subproblems. 

– We will introduce recursion, a way to solve a problem based on the 

solution/outcome of subproblems. 

• For a problem, there may be multiple algorithms. 

– The first criterion, of course, is correctness. 

– Time complexity is typically the next for judging correct algorithms. 

• As examples, we introduce two specific problems: searching and sorting. 

• Let’s watch a video! 
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Example: listing all prime numbers

• Given an integer n, let’s list all the prime numbers no greater than n. 

• Consider the following (imprecise) algorithm:

– For each number i no greater than n, check whether it is a prime number. 

• To check whether i is a prime number:

– Idea: If any number j < i can divide i, i is not a prime number. 

– Algorithm: For each number j < i, check whether j divides i. If there is any 

j that divides i, report no; otherwise, report yes. 

• Before we write a program, we typically prefer to formalize our algorithm. 

– We write pseudocodes, a description of steps in words organized in a 

program structure. 

– This allows us to ignore the details of implementations. 
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Example: listing all prime numbers

• One pseudocode for listing all prime 

numbers no greater than n is: 

• Once we have described an algorithm in pseudocodes, implementation is easy. 

Given an integer n:
for i from 2 to n

assume that i is a prime number
for j from 2 to i – 1 

if j divides i
set i to be a composite number

if i is still considered as prime
print i

• Implementation: 

for(int i = 2; i <= n; i++) {

bool isPrime = true;

for(int j = 2; j < i; j++) {

if(i % j == 0) {

isPrime = false;

break;

}

}

if(isPrime == true)

cout << i << " ";

}
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A full implementation

• Let’s modularize our implementation:

– isPrime(int x) determines whether 

the given integer x is a prime number. 

• Now we have a correct algorithm. 

– May we improve this algorithm? 

#include <iostream>

using namespace std;

bool isPrime(int x);

int main()

{

int n = 0; 

cin >> n;

for(int i = 2; i <= n; i++)

{

if(isPrime(i) == true)

cout << i << " ";

}

return 0;

}

bool isPrime(int x)

{

for(int i = 2; i < x; i++)

{

if(x % i == 0)

return false;

}

return true;

}
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Improving our algorithm

• The algorithm can be faster: 

– Do not use i <= sqrt(x) (why?).

– We improved the algorithm, not the 

implementation. 

• May we do even better? 

#include <iostream>

using namespace std;

bool isPrime(int x);

int main()

{

int n = 0; 

cin >> n;

for(int i = 2; i <= n; i++)

{

if(isPrime(i) == true)

cout << i << " ";

}

return 0;

}

bool isPrime(int x)

{

for(int i = 2; i * i <= x; i++)

{

if(x % i == 0)

return false;

}

return true;

}
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Improving our algorithm further

• Let’s consider a completely different algorithm: 

– Let’s start from 2. Actually 2, 4, 6, 8, … are all composite numbers. 

– For 3, actually 3, 6, 9, … are all composite numbers. 

– We may use a bottom-up approach to eliminate composite numbers. 

• The pseudocode (with comments): 

Given a Boolean array A of length n
Initialize all elements in A to be true // assuming prime
for i from 2 to n

if Ai is true
print i
for j from 1 to ⌊ ൗ𝑖 𝑗⌋ // eliminating composite numbers

Set A[𝑖 × 𝑗] to false
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Improving our algorithm further

for(int i = 2; i <= n; i++)

{

if(isPrime[i] == true)

{

cout << i << " ";

ruleOutPrime(i, isPrime, n);

}

}

return 0;

}

void ruleOutPrime

(int x, bool isPrime[], int n)

{

for(int i = 1; x * i < n; i++)

isPrime[x * i] = false;

}

#include <iostream>

using namespace std;

const int MAX_LEN = 10000;

void ruleOutPrime

(int x, bool isPrime[], int n);

int main()

{

int n = 0; 

cin >> n; // must < 10000

bool isPrime[MAX_LEN] = {0};

for(int i = 0; i < n; i++)

isPrime[i] = true;
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Complexity

• When all the three algorithms are 

correct, they are not equally 

efficient. 

• We typically care about the 

complexity of an algorithm: 

– Time complexity: the running 

time of an algorithm. 

– Space complexity: the amount 

of spaces used by an algorithm. 

– Time is typically more critical. 

• Algorithm 2 is much faster! 
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Complexity

• Running time may be affected by the hardware, number of programs running at 

the same time, etc. 

– The number of basic operations is a better measurement. 

– Basic operations include simple arithmetic, comparisons, etc. 

• Convince yourself that algorithm 2 does fewer basic operations. 

• The calculation of complexity needs training. 

– This will be formally introduced in Discrete Mathematics, Data Structures, 

and/or Algorithms. 
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Recursive functions

• A function is recursive if it invokes itself (directly or indirectly). 

• The process of using recursive functions is called recursion. 

• Why recursion? 

– Many problems can be solved by dividing the original problem into one or 

several smaller pieces of subproblems. 

– Typically subproblems are quite similar to the original problem. 

– With recursion, we write one function to solve the problem by using the 

same function to solve subproblems. 
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Example 1: finding the maximum

• Suppose that we want to find the maximum number in an array A[1..n] (which 

means A is of size n). 

– Is there any subproblem whose solution can be utilitzed? 

– Subproblem: Finding the maximum in an array with size smaller than n. 

• A strategy: 

– Subtask 1: First find the maximum of A[1..(n – 1)]. 

– Subtask 2: Then compare that with A[n]. 

• How would you visualize this strategy? 

• While subtask 2 is simple, subtask 1 is similar to the original task. 

– It can be solved with the same strategy! 
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Example 1: finding the maximum

• Let’s try to implement the strategy.  

• First, I know I need to write a function whose header is: 

– This function returns the maximum in array (containing len elements). 

– I want this to happen, though at this moment I do not know how. 

• Now let’s implement it: 

– If the function really works, subtask 1 can be completed by invoking 

– Subtask 2 is done by comparing subMax and array[len - 1]. 

double max(double array[], int len);

double subMax = max(array, len - 1);
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Example 1: finding the maximum

• A (wrong) implementation: 

• What will happen if we really 

invoke this function? 

– The program will not terminate! 

– Even when len is 1 in an 

invocation, we will still try to 
invoke max(array, 0). 

• For an array whose size is 1: 

– That number is the maximum! 

• With this, we can add a stopping 

condition into our function. 

double max(double array[], int len)

{

double subMax = max(array, len - 1); 

if(array[len - 1] > subMax)

return array[len - 1];

else

return subMax;

}

int main()

{

double a[5] = {5, 7, 2, 4, 3}; 

cout << max(a, 5); 

return 0;

}
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• A correct implementation is: 

• What is the outcome? 

• Both else can be removed. Why? 

Example 1: finding the maximum

double max(double array[], int len)

{

if(len == 1) // stopping condition

return array[0];

else 

{

// recursive call

double subMax = max (array, len - 1); 

if (array[len - 1] > subMax)

return array[len - 1];

else

return subMax;

}

}

int main()

{

double a[5] = {5, 7, 2, 4, 3}; 

cout << max(a, 5); 

return 0;

}
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• Is it okay to remove both else? Why? 

Example 1: finding the maximum

double max(double array[], int len)

{

if(len == 1) // stopping condition

return array[0];

else 

{

// recursive call

double subMax = max (array, len - 1); 

if(array[len - 1] > subMax)

return array[len - 1];

else

return subMax;

}

}

double max(double array[], int len)

{

if(len == 1) // stopping condition

return array[0];

// recursive call

double subMax = max (array, len - 1); 

if(array[len - 1] > subMax)

return array[len - 1];

return subMax;

}
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Example 2: computing factorials

• How to write a function that computes the factorial of n? 

– A subproblem: computing the factorial of n – 1. 

– A strategy: First calculate the factorial of n – 1, then multiply it with n. 

int factorial(int n)

{

if(n == 1) // stopping condition

return 1;

else

// recursive call

return factorial(n - 1) * n;

}
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Example 2: computing factorials

• When we invoke this function with argument 4: 

• factorial(4)

= factorial(3) * 4

= (factorial(2) * 3) * 4

= ((factorial(1) * 2) * 3) * 4

= ((1 * 2) * 3) * 4

= (2 * 3) * 4

= 6 * 4

= 24
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Example 3: the Fibonacci sequence

• Write a recursive function to find the nth Fibonacci number. 

– The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, …. Each number is the 

sum of the two proceeding numbers. 

– The nth value can be found once we know the (n – 1)th and (n – 2)th values. 

int fib(int n)

{

if(n == 1)

return 1;

else if(n == 2)

return 1;

else // two recursive calls

return (fib(n - 1) + fib(n - 2));

}
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Some remarks 

• There must be a stopping condition in a recursive function. Otherwise, the 

program will not terminate.

• In many cases, a recursive strategy can also be implemented with loops. 

– E.g., writing a loop for finding a maximum and factorial. 

– But sometimes it is hard to use loops to imitate a recursive function. 

• Compared with an equivalent iterative function, a recursive implementation is 

usually simpler and easier to understand. 

• However, it generally uses more memory spaces and is more time-consuming.

– Invoking functions has some cost. 
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Complexity issue of recursion

• In some cases, recursion is efficient enough. 

– E.g., finding a maximum or calculating the factorial. 

• In some cases, however, recursion can be very inefficient! 

– E.g., Fibonacci. 

• Let’s compare the efficiency of two different implementations. 
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Complexity issue of recursion

• Two implementations: double fibRepetitive(int n)

{

if(n == 1 || n == 2)

return 1;

int fib1 = 1, fib2 = 1;

int fib3 = 0;

for(int i = 2; i < n; i++)

{

fib3 = fib1 + fib2;

fib1 = fib2;

fib2 = fib3;

}

return fib3;

}

int fib(int n)

{

if(n == 1)

return 1;

else if(n == 2)

return 1;

else // two recursive calls

return (fib(n-1) + fib(n-2));

}
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Complexity issue of recursion

• Which one is faster?

int main() 

{

int n = 0;

cin >> n; 

cout << fibRepetitive(n) << "\n"; // algorithm 1

cout << fib(n) << "\n"; // algorithm 2

return 0;

}

Algorithms and complexity Recursion Searching and sorting



Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 27 / 43

Polynomial time vs. exponential time

• Given n: 

– The repetitive way has around c1n steps, where c1 > 0 is a constant.   

– The recursive way has around c22
n steps, where c2 > 0 is a constant. 

• When n is large enough, c22
n is much larger than c1n. 

– Even if c1 << c2! 

– We say the repetitive way is more efficient. 

• Technically, we say that: 

– The repetitive way is a polynomial-time algorithm 

– The recursive way is an exponential-time algorithm. 

• In general, an exponential-time algorithm is just too inefficient. 
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Power of recursion

• Though recursion is sometimes inefficient, typically implementation is easier. 

• Let’s consider the classic example “Hanoi Tower”. 

– There are three pillars and disks of different sizes which can slide onto any 

pillar. Disc i is smaller than disc j if i < j. 

– A large disc cannot be placed on top of a small disc.

• Initially, all discs are at pillar A. We want to move them to pillar C: 

– Only one disk can be moved at a time.

– Each move consists of taking the upper disk from one of the stacks and 

placing it on top of another stack. 

• Let’s watch a video!

• What are the steps that solve the Hanoi Tower problem in the fastest way? 
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A recursive implementation 

• Is there a good way of solving the Hanoi Tower problem iteratively? 

void hanoi(char from, char via, 

char to, int disc)

{

if(disc == 1)

cout << "From " << from 

<< " to " << to << "\n";

else

{

hanoi(from, to, via, disc - 1);

cout << "From " << from 

<< " to " << to << "\n";

hanoi(via, from, to, disc - 1);

}

}

#include <iostream>

using namespace std;

int main()

{

int disc = 0; // number of discs

cin >> disc;

char a = 'A', b = 'B', c = 'C';

hanoi(a, b, c, disc);

return 0;

}
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Searching

• One fundamental task in computation is to search for an element. 

– We want to determine whether an element exists in a set. 

– If yes, we want to locate that element. 

– E.g., looking for a string in an article. 

• Here we will discuss how to search for an integer in an one-dimensional array. 

• Whether the array is sorted makes a big difference. 
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Searching

• Consider an integer array A[1..n] and an integer p. 

• How to determine whether p exists in A?  

• If so, where is it? 

– Assume that we only need to find one p even if there are multiple. 

• Suppose that the array is unsorted. 

• One of the most straightforward way is to apply a linear search. 

– Compare each element with p one by one, from the first to the last. 

– Whenever we find a match, report its location. 

– Conclude that p does not exist if we end up with nothing. 

• The number of operations we need to execute is roughly proportional to n. 
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Binary search

• What if the array is sorted? 

• We may still apply the linear search. 

• However, we may improve the efficiency by implementing a binary search. 

– First, we compare p with the median m (e.g., A[(n + 1) / 2] if n is odd). 

– If p equals m, bingo! 

– If p < m, we know p must exist in the first half of A if it exists. 

– If p > m, we know p must exist in the second half of A if it exists. 

– For the latter two cases, we will continue searching in the subarray. 

• Let’s watch a video! 
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Binary search: pseudocode

binarySearch(a sorted array A, search in between from and to, search for p)

if n = 1

return true if Afrom = p; return false otherwise

else

let median be floor((from + to) / 2)

if p = Amedian

return true

else if p < Amedian

return binarySearch(A, from, median, p)

else

return binarySearch(A, median + 1, to, p)
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Linear search vs. binary search

• In binary search, the number of instructions to be executed is roughly 

proportional to log2 n. 

• So binary search is much more efficient than linear search! 

– The difference is huge is the array is large. 

– However, binary search is possible only if the array is sorted. 

– Is it worthwhile to sort an array before we search it? 

• It is natural to implement binary search with recursion. 

– A subproblem is to search for the element in one half of the array. 

• Binary search can also be implemented with repetition. 

– Is it natural to do so? 
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Sorting

• Given a one-dimensional integer array A of size n, how to sort it? 

• Given numbers 6, 9, 3, 4, and 7, how would you sort them? 

• Recall what you typically do when you play poker: 

– First put the first number 6 aside. 

– Compare the second number 9 with 6. Because 9 > 6, put 9 to the right of 6. 

– Compare the third number 3 with the sorted list (6, 9). Because 3 < 6, put 3 

to the left of 6. 

– Compare 4 with (3, 6, 9). Because 3 < 4 < 6, insert 4 in between 3 and 6. 

– Compare 7 with (3, 4, 6, 9). Because 6 < 7 < 9, insert 7 in between 6 and 9.  

– The result is (3, 4, 6, 7, 9). 

• Let’s watch a video! 
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Insertion sort

• The above algorithm is called insertion sort. 

– The key is to maintain a sorted list. 

– Then for each number in the unsorted list, insert it into the proper location 

so that the sorted list remains sorted. 

• How would you implement the insertion sort? 

– Recursion or repetition? 

– If recursion, what is your strategy? 
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(Non-repetitive) insertion sort

• The pseudocode: 

• What if A is repetitive? 

insertionSort(a non-repetitive array A, the array length n, an index cutoff < n)

// at any time, A1..cutoff is sorted and A(cutoff + 1)..n is unsorted

if Acutoff + 1 < A1..cutoff

let p be 1

else

find p such that Ap – 1 < Acutoff + 1 < Ap

insert Acutoff + 1 to Ap and shift Ap..cutoff to A(p + 1)..(cutoff + 1)

if cutoff + 1 < n

insertionSort(A, n, cutoff + 1)
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Insertion sort

• Roughly how many instructions do we need for insertion sort?

– We need to do n insertions.  

– To insert the kth value, we search for a position and shift some elements. 

• A linear search: at most k comparisons. 

• Shifting: at most k shifts. 

– Roughly we need 1 + 2 + … + n operations, which is proportional to n2.

• Does binary search help? 
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Mergesort (Merge sort)

• Insertion sort is simple and fast! 

– Not really “fast”, but faster than many similar sorting algorithm. 

– Because its idea and implementation is simple, it is faster than most 

algorithms when the array size is small. 

• Interestingly, there is another sorting algorithm: 

– Its idea is somewhat similar to insertion sort. 

– But it is significantly faster for large arrays! 

• This algorithm is called mergesort. 
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Mergesort (Merge sort)

• Recall that in an insertion sort, we need to insert one number into a sorted list 

for many times. 

• A key observation is that “inserting” another sorted list of size k into a sorted 

list can be faster than inserting k separate numbers one by one! 

– So such “inserting” is actually “merging”.

• Given an unsorted array, we will: 

– First split the array into two parts, the first half and second half. 

– Then sort each subarray. 

– Finally, merge these two subarrays. 

• Mergesort is perfect for recursion! 
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Mergesort (Merge sort): pseudocode

mergeSort(an array A, the array length n)

let median be floor((1 + n) / 2) 

mergeSort(A1..median, median) // now A1..median is sorted

mergeSort(A(median + 1)..n, n – median + 1) // now A(median + 1)..n is sorted

merge A1..median and A(median + 1)..n // how?
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Mergesort (Merge sort)

• Interestingly, insertion sort is a special way of running mergesort. 

– Not splitting the array into two halves. 

– Instead, splitting it into A[1..n – 1] and A[n]. 

• Once we use the “smart split”, the efficiency is improved a lot! 

– Insertion sort: Roughly proportional to n2. 

– Merge sort: Roughly proportional to n log n. 

• A simple observation can make a huge difference! 
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