Inheritance An example Polymorphism

Programming Design
Inheritance and Polymorphism
Ling-Chieh Kung

Department of Information Management
National Taiwan University

Programming Design — Inheritance and Polymorphism 1/62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Outline

* Inheritance
« Anexample
« Polymorphism

Programming Design — Inheritance and Polymorphism 2162 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Inheritance

« The three main characteristic/functionalities of OOP:
— Encapsulation: packaging + data hiding.
— Inheritance: today’s topic.
— Polymorphism: next lecture’s topic.
« Through inheritance, we may create new classes from existing classes.
— A derived (child) class inherits a base (parent) class.
— Achild class has (some) members defined in the parent class.
 This is particularly useful when “XXX is a OOQO”.
— An apple is a fruit.
— Acircle is a shape.
— Atruck is a vehicle.

Programming Design — Inheritance and Polymorphism 3/62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

The first example

« Recall that we have defined MyVector. class MyVector

« Atwo-dimensional (2D) vector is a vector! l{)rotected: // to be explained

* Let’s create a class for 2D vector by int n;

inheritance. double* m;
public:
MyVector () ;
MyVector MyVector (int n, double m[]) ;
MyVector (const MyVectoré& v) ;
~MyVector ()
T void print() const;

// =I !=I <I []I =I +=
};

MyVector2D

Programming Design — Inheritance and Polymorphism 4162 Ling-Chieh Kung (NTU IM)

Inheritance

An example

Polymorphism

Brothers and sisters

« One parent class can be inherited by multiple child classes.

MyVector
A
MyVector2D MyVector3D MyVector8D
Programming Design — Inheritance and Polymorphism 5/62 Ling-Chieh Kung (NTU IM)

Inheritance An example

Polymorphism

Child class MyVector2D

class MyVector2D : public MyVector
{
public:
MyVector2D() ;
MyVector2D (double m[]) ;
i
MyVector2D: :MyVector2D ()
{
this->n = 2;
}
MyVector2D: :MyVector2D (double m[]) : MyVector (2, m)
{
}

int main()

{
double i[2] = {1, 2};
MyVector2D v (i) ;
v.print() ;
cout << v[1l] < endl;

return 0;

« That is all for MyVector2D!

— The modifier public will be discussed later.

Programming Design — Inheritance and Polymorphism 6/62

Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Inheriting parent class’ members

« Members in the parent class are automatically defined in the child class.

— Except private members, constructors, class MyVector
and the destructor. {
— A protected member can only be accessed prci)ﬁicfd :
by itself and its successors. double* m;
« What are the members of MyVector2D? public:
MyVector () ;
class MyVector2D : public MyVector MyVector (int n, double m[]);
{ MyVector (const MyVectoré& v) ;
public: ~MyVector ()
MyVector2D () ; void print() const;
MyVector2D (double m[]) ; /=, '=, <, [, = +
}; };

Programming Design — Inheritance and Polymorphism 7162 Ling-Chieh Kung (NTU IM)

Inheritance An example

Polymorphism

Invoking parent class’ constructors

* The parent class’ constructor will not be inherited.

e One of them will be invoked before the child class’ constructor is invoked.

— Create the parent before creating the child!

» Ifnot specified, the parent’s default constructor will be invoked.

MyVector: :MyVector () : n(0) , m(nullptr) int main|()
{ {
} MyVector2D v;
MyVector2D: :MyVector2D () return O;
{ }
this->n = 2;
// this->m = nullptr is redundant
}
Programming Design — Inheritance and Polymorphism 8/62 Ling-Chieh Kung (NTU IM) |

Inheritance

An example

Polymorphism

Invoking parent class’ constructors

To specify a parent’s constructor to call, use the syntax for member initializer:
— Pass appropriate arguments to control the behavior.

MyVector: :MyVector (int n, double m[])
{
this->n = n;
this->m = new double[n];
for(int i = 0; i < n; i++)
this->m[i] = m[i];
}
MyVector2D: :MyVector2D (double m[])
{
// not MyVector (2, m) here!
}

: MyVector (2, m)

int main()

{
double i[2] = {1, 2};
MyVector2D v(i) ;
v.print() ;
cout << v[1l] << endl;

return O;

Programming Design — Inheritance and Polymorphism

9/62

Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Invoking copy constructors

¢ HOW abOUt the COpy COnStI'UCtOI"? bdy\]ector; ;bdyVector (const bdy\]ector& v)
» If we do not define one for the child, -

the system provides a default one this~>n = v.n;

y P ' this->m = new double[n];

 Before the child’s default copy for(int i = 0; i < n; i)

constructor is invoked, the this->m[i] = v.m[1];

parent’s copy constructor will be <}:1ass MyVector2D : public MyVector

automatically invoked. {

public:
MyVector2D () ;

MyVector2D (double m[]) ;
// no copy constructor

};

Programming Design — Inheritance and Polymorphism 10/ 62 Ling-Chieh Kung (NTU IM)

Inheritance An example

Polymorphism

Invoking copy constructors

 If we define a copy constructor for the child, we must specify the constructor

we want to invokel!

— Otherwise the parent’s default constructor will be invoked.

class MyVector2D : public MyVector
{
public:

MyVector2D () ;

MyVector2D (double m[]) ;

MyVector2D (const MyVector2D& v) {}
};

int main()

{

double i[2] = {1, 2};
MyVector2D v (i) ;
MyVector2D w(v) ;
w.print(); // error
cout << w[l] << endl;

return O;

Programming Design — Inheritance and Polymorphism 11/62

Ling-Chieh Kung (NTU IM)

Inheritance

An example

Polymorphism

Using parent’s member functions

« Once member variables are set properly, typically all the member functions of
the parent can be used with no error.

void MyVector: :print() const
{
cout << "(";
for(int i =0;, i <n -1; i++)
cout << m[i] < ", ";
cout << m[n-1] << ")\n";
}
double& MyVector: :operator|[] (int i)
{
if(i <0 || i >=n)
exit(1l);
return m[i];
}

int main()

{
double i[2] = {1, 2};
MyVector2D v(i) ;
v.print() ;
cout < v[l] << endl;

return 0;

Programming Design — Inheritance and Polymorphism 12 /62

Ling-Chieh Kung (NTU IM)

Inheritance

An example Polymorphism

Defining new members for the child

« Achild may have its own
members.

— The parent has no way to
access a child’s member.
 Let’s define a setValue ()
function without using arrays:

— Note that this should never

be a member of MyVector.

* We may also define new
member variables and static
members.

class MyVector2D : public MyVector
{
public:
MyVector2D() { this-> n = 2; }
MyVector2D (double m[]) : MyVector (2, m) {}
void setValue (double il, double i2);
};
void MyVector2D: :setValue (double il, double iZ2)
{
if (this->m = nullptr)
this->m = new double[2];
this->m[0] = il;
this->m[l] = i2;
}

Programming Design — Inheritance and Polymorphism

13/62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Invoking parent class’ destructor

* When an object of the child class is to MyVector : : ~MyVector ()
be destroyed: {
— First the child’s destructor 1s invoked.) delete 1l m;
— Then the parent’s destructor is class MyVector2D : public MyVector
invoked automatically, even if we do f{:ub L
. . icC:
not define a destructor for the child. MyVector2D () ;
MyVector2D (double m[]) ;
// no destructor
};

Programming Design — Inheritance and Polymorphism 14/ 62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Summary
« Using inheritance to create class MyVector2D : public MyVector
new classes is so simple! { // change private to protected in MyVector
] public:
— We save time and MyVector2D() { this—> n = 2; }
enhance consistency. MyVector2D (double m[]) : MyVector(2, m) {}

void setValue (double il, double i2);

— Pay attention to default }s

constructors, copy void MyVector2D: : setValue (double il, double i2)
constructors, and {
destructors. if (this->m = nullptr)

. this->m = new double[2];

— If one thing should not be this->m[0] = il;
Inherited, set it to private. this->m[1] = i2;

}

Programming Design — Inheritance and Polymorphism 15/62 Ling-Chieh Kung (NTU IM)

Inheritance

An example Polymorphism

Function overriding

« We may also redefine existing
member inherited from a parent.

— This typically happens to
member functions.

— We say that we override the
member function.

* Asan example, let’s override
print():

class MyVector2D : public MyVector
{
public:
MyVector2D() { this-> n = 2; }
MyVector2D (double m[]) : MyVector (2, m) {}
void setValue(double il, double i2);
void print() const;
};
void MyVector2D: :print() const
{
cout << "2D: (";
for(int 1 =0; i<n-1; iH)
cout << m[i] << ", ";
cout << m[n-1] << ")\n";

}

Programming Design — Inheritance and Polymorphism

16 /62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Function overriding

* To override a parent’s member function, define a child’s member function with
exactly the same function signature.

— A child object will invoke the child’s implementation.
— The parent’s implementation becomes hidden to a child object.
* Inside the child class, we may invoke a parent’s member function by using : :.

void MyVector2D: :print() const
{

cout << "2D: ";

MyVector: :print() ;
}

— Use it if consistency can be enhanced.

Programming Design — Inheritance and Polymorphism 17/62 Ling-Chieh Kung (NTU IM)

Inheritance

An example

Overriding a constant function

« What will happen to the following
program?

int main()

{
double i[2] = {1, 2};
const MyVector2D v(i) ;
v.print(); // 2D: (1, 2)

MyVector2D u;
u.setValue (3, 4);
u.print(); // (3, 4)

return 0O;

class MyVector

{
/l ...
void print() const;
}i
class MyVector2D : public MyVector
{
/l ...
void print() { MyVector: :print(); }
void print() const
{
cout << "2D: ";
MyVector: :print() ;
}
}i

Programming Design — Inheritance and Polymorphism

Ling-Chieh Kung (NTU IM)

Polymorphism

Inheritance An example Polymorphism

Overriding a constant function

« How about this?

int main() class MyVector
{ {
double i[2] = {1, 2}; // ...
const MyVector2D v(i) ; void print() const;
v.print(); // error! };
class MyVector2D : public MyVector
MyVector2D u; {
u.setValue (3, 4); // ...
u.print(); // (3, 4) void print()
{
return O; MyVector: :print() ;
} }
};

Programming Design — Inheritance and Polymorphism 19/62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Overriding a member variable?

Technically, we may override a member variable.

In general, overriding a parent’s member variable 1s not suggested.
— Unless you really know what you are doing.

— After all, we will inheritance because we believe XXX 1s a OOO. A parent’s
member variable should be a part of a child!

Overriding a parent’s member function 1s useful.
What is the difference between function overloading and function overriding?
Sometimes we override a member function for efficiency.

Programming Design — Inheritance and Polymorphism 20/ 62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Cascade inheritance

« While a child inherits its parent, it may have a grandchild

Inheriting itself. MyVector
« How may we create a class for two-dimensional

nonnegative vectors? T

— {(x,y)|x =0,y = 0}.
« A 2D nonnegative vector is a 2D vector!

* Let’s use inheritance again.

MyVector2D

T

NNVector2D

Programming Design — Inheritance and Polymorphism 21/62 Ling-Chieh Kung (NTU IM)

Inheritance

An example

Child class NNVectoxr2D

Defining NNVector2D is simple:

class NNVector2D : public MyVector2D

{
public:
NNVector2D() ; // MyVector2D's
// constructor?
NNVector2D (double m[]) ;

void setValue(double il, double i2);

};

NNVector2D: :NNVector2D ()
{

}

NNVector2D: :NNVector2D (double m[])
{
this->m = new double[2];
this->m[0] = m[0] > 0 ? m[0] : O;
this->m[1l] = m[1l] > 0 ? m[1] : O;
}
void NNVector2D: :setValue
(double il, double i2)
{
if (this->m = nullptr)
this->m = new double[2];
this->m[0] =il >= 0 ? il : O;
this->m[l] =i2 >= 0 ? i2 : O;
}

What happens when an NNVector2D object is created?

— If we do not specify a parent’s constructor, the default one will be invoked.

Programming Design — Inheritance and Polymorphism

Ling-Chieh Kung (NTU IM)

Polymorphism

Inheritance An example Polymorphism

Child class NNVector2D

* An alternative implementation:

NNVector2D: :NNVector2D (double m[]) : MyVector2D (2, m)
{
if(m[0] < 0)
this->m[0]
if(m[1] < 0)
this->m[1l] = O;

0,

Programming Design — Inheritance and Polymorphism 23 /62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Cascade Iinheritance

* Ingeneral, a class has all the protected and public members (excluding
constructors and destructors) of its predecessors.

« When an object is created:
— Constructors are invoked from the oldest class to the youngest class.

— Each constructor can specify a one-level-above constructor to invoke.

— Only one level!

« When an object is destroyed:
— Destructors are invoked from the youngest to the oldest.

Programming Design — Inheritance and Polymorphism 24 /62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Inheritance visibility

« Recall that we added the modifier public when MyVector2D inherits
MyVector and when NNVector2D inherits MyVector2D.

— This modifier specifies the inheritance visibility.
— It shows how this child modify the member visibility set by its predecessors.

« When one inherits something from its parent, it may narrow the visibility of
these members.

— E.g., If my parent set its to protected, | may set it to private.
— E.g., If my parent set its to private, | cannot set it to public.
« Why only narrowing?

Programming Design — Inheritance and Polymorphism 25/ 62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Inheritance visibility

* In general, the visibility of a member in a child class depends on:
— The member visibility by the parent.
— The inheritance modifier.

Member visibility Inheritance modifier
by the parent public protected | private
public public | protected | private

protected protected | protected | private

private private private private

 If you have no idea, just use public inheritance.

Programming Design — Inheritance and Polymorphism 26 /62 Ling-Chieh Kung (NTU IM)

Inheritance

An example

Polymorphism

Multiple inheritance

« Suppose your friend argues:

— A two-dimensional
vector is a vector.

— A nonnegative vector is
a vector.

— A two-dimensional
nonnegative vector

should be the child of
them!

* Does that make sense?

MyVector

/\

MyVector2D

NNVector

\/’

NNVector2D

Programming Design — Inheritance and Polymorphism

27162

Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Multiple inheritance

* In C++, multiple inheritance is allowed.
« However, it is not recommended!

— In some other object-oriented programming languages (e.g., Java), multiple
inheritance is forbidden.

 [f there are multiple parents:
— Whose constructor/destructor goes first?
— Whose variables are stored in the front?
— May | inherit from my sister? May | inherit from my grandaunt?

« We also suggest you not to do multiple inheritance (even though it has been
used in C++ standard library).

Programming Design — Inheritance and Polymorphism 28 /62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Outline

 Inheritance
« Anexample
« Polymorphism

Programming Design — Inheritance and Polymorphism 29 /62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

An RPG game

* Inatypical Role-Playing Game (RPG), a player plays the role of a character,
who keep beating enemies (monsters, bad guys, or other players' characters).

— By beating enemies, one earns experience points to advance to higher
levels and become stronger.

« In many RPGs, one can choose the occupation for her character(s). The
occupation typically affects the ability of a character (e.g., a warrior and a
wizard are quite different).

— Characters with different occupations have different attributes and behave
differently. However, they are all characters.

« (Given a class Character that defines some general features of an RPG
character, let’s create two new classes Warrior and Wizard

Programming Design — Inheritance and Polymorphism 30/62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Class Character

» The class Character includes the ‘{’1355 Character
name, current_level, accumulat(_ed_ protected:
experience points, and three ability static const int EXP LV = 100;
levels: power, knowledge, and luck. string name;
. . int level;
— When a character joins your team, int exp;
she/he may be at any level. int power;
— For all characters in our game, the E: ll‘zgledg’e
number of experience points s '

required for level k is 100(k — 1)2.

— The number 100 is stored as a
static constant EXP LV.

Programming Design — Inheritance and Polymorphism 31/62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Class Character

* Thereis a constructor: ‘{’hss Character
— To create a character, we must protected:
specify all its attributes except the static const int EXP IV = 100;
. - string name;
experience point. int level
— Anew character at level k always int exp;
starts with 100(k — 1)? experience int power;
- int knowledge;
ints.
po_ s _ _ int luck;
* There is a public function print(): public:
— It prints out the current status of a Character (string n, int lv,
h A int po, int kn, int 1lu);
character. void print() ;
};

Programming Design — Inheritance and Polymorphism 32/62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Class Character

class Character

« There is a public function {

beatMonster (int exp). protected:
— Itis invoked when the character static const int EXP LV = 100;
beats a monster. string name;
] . int level;
— exp IS the number of experience int exp;
points earns in this battle. int power;
. . . int knowledge;
— This function Increments th_e int luck;
accumulated experience points public:
and brings up one’s level when Character (string n, int lv,
possible. int po, int kn, int lu);

void print() ;
void beatMonster (int exp) ;
};

Programming Design — Inheritance and Polymorphism 33/62 Ling-Chieh Kung (NTU IM)

Inheritance An example

Polymorphism

Class Character

There is a private function levelUp():

— The character's 1lewvel will be
Incremented.

— However, her abilities will remain
the same because characters of
different occupations should get
different improvements.

— This should be specified in
Warrior and Wizard

Finally, let’s add a public member
function getName () to return the name

class Character
{
protected:
static const int EXP LV = 100;
// the six attributes
void levelUp
(int pInc, int kInc, int 1lInc);
// protected menmber function
public:
Character (string n, int lv,
int po, int kn, int 1lu);
void print() ;
void beatMonster (int exp) ;
string getName () ;

};

of a character.

Programming Design — Inheritance and Polymorphism 34162

Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Implementation of Character

Character: :Character (string n, int 1lv, int po, int kn, int lu)
: name(n), level(lv), exp(pow(lv - 1, 2) * EXP LV),
power (po) , knowledge (kn) , luck (lu)
{
}
void Character: :print() {
cout << this->name // Mikasa: 100 (980100/1000000), 1000-500-500
<< ": Level " << this->level
<< " (" << this—>exp << "/" << pow(this->level, 2) * EXP IV << "), "
<< this->power << "-" << this->knowledge << "-" << this->luck << "\n";
}
string Character: :getName ()
{
return this->name;
}

Programming Design — Inheritance and Polymorphism 35/62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Implementation of Character

void Character: :beatMonster (int exp)
{
this->exp += exp;
while (this->exp >= pow(this->level, 2) * EXP LV)
this->levelUp(0, 0, 0); // No improvement when advancing to the next level
}
void Character: :levelUp(int pInc, int kInc, int 1Inc) ({
this->level++;
this->power += pInc;
this->knowledge += kInc;
this->luck += lInc;

Programming Design — Inheritance and Polymorphism 36 /62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Character, Warrior, and Wizard

* Character should not be used to
create an object.

— No improvement when advancing
to the next level.

— Personal attributes for T
iImprovements per level are not
defined.

* \We define two derived classes
Warrior and Wizard:

— Character IS an abstract class.

— Warrior and Wizard are
concrete classes.

Character

Warrior Wizard

Programming Design — Inheritance and Polymorphism 37162 Ling-Chieh Kung (NTU IM)

Inheritance An example

Polymorphism

Classes Warrior and Wizard

class Warrior : public Character
{
private:
static const int PO LV = 10;
static const int KN LV = 5;
static const int 1U IV = 5;
public:
Warrior (string n, int 1lv = 1)

void beatMonster (int exp) // function overriding
{
this->exp += exp;
while (this->exp >= pow(this->level, 2) * EXP IV)
this—>levelUp (PO LV, KN IV, LU LV);

};

: Character(n, lv, 1lv * PO IV, 1lv * KN IV, 1lv * LU IV) {}
void print() { cout << "Warrior "; Character: :print(); }

Programming Design — Inheritance and Polymorphism 38/62

Ling-Chieh Kung (NTU IM)

Inheritance An example

Polymorphism

Classes Warrior and Wizard

class Wizard : public Character
{
private:
static const int PO LV = 4;
static const int KN LV = 9;
static const int IU IV = 7;
public:
Wizard(string n, int 1lv = 1)

void beatMonster (int exp) // function overriding
{
this->exp += exp;
while (this->exp >= pow(this->level, 2) * EXP IV)
this—>levelUp (PO LV, KN IV, LU LV);

};

: Character(n, lv, 1lv * PO IV, 1lv * KN IV, 1lv * LU IV) {}
void print() { cout << "Wizard "; Character: :print(); }

Programming Design — Inheritance and Polymorphism 39/62

Ling-Chieh Kung (NTU IM)

Inheritance An example

Polymorphism

Some guestions

* We may create Warrior and Wizard objects in
our program.

— May we prevent one from creating a
Character object?

e A “team” has at most ten members.

— We create two arrays, one for warriors and one
for wizards. Each of them has a length of 10.

— Why wasting spaces?

class Team
{
private:
int warriorCount;
int wizardCount;
Warrior* warrior[10];
Wizard* wizard[10];
public:
Team() ;
~Team() ;
// some other functions

};

Programming Design — Inheritance and Polymorphism 40/ 62

Ling-Chieh Kung (NTU IM)

Inheritance

An example Polymorphism

Some guestions

 We may need to add a
warrior/wizard, let a
warrior/wizard beat a monster,
and print the current status of a
warrior/wizard.

— Characters’ names are all
different.

 Either we write two functions
for a task, or write just one.

— Two: tedious and
Inconsistent.

— One: Inefficient.

class Team
{
private:
int warriorCount;
int wizardCount;
Warrior* warrior[1l0];
Wizard* wizard[10];
public:
Team() ;
~Team() ;
void addWar (string name, int 1v);
void addWiz (string name, int 1v);
void warBeatMonster (string name, int exp);
void wizBeatMonster (string name, int exp);
void printWar (string name) ;
void printWiz (string name) ;

};

Programming Design — Inheritance and Polymorphism

41 /62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Outline

 Inheritance
« Anexample
« Polymorphism

Programming Design — Inheritance and Polymorphism 42 162 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Polymorphism

« The key flaw Is to create two arrays, one for warriors and one for wizards.

— May we use only one array to store the ten members?

— But Warrior and Wizard are different classes.
« While they are different classes, they have the same base class.

— They are all Characters!

— May we declare a Character array to store Warrior and Wizard objects?
« We can. This is called polymorphism.

— In C++, the way we implement polymorphism is to

“Use a variable of a parent type to
store a value of a child type.”

Programming Design — Inheritance and Polymorphism 43162 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Variables vs. values

« Let’s differentiate a variable’s type and a value’s type.
« Avariable can store values and must have a type.
— E.g., a double variable is a container which “should” store a double value.
« Avalue is the thing that is stored in a variable.
— E.g.,12.50r 7.
« Avalue has its own type, which may be different from the variable’s type.
* In C++, a parent variable can store a child object.

Programming Design — Inheritance and Polymorphism 44] 62 Ling-Chieh Kung (NTU IM)

Inheritance

An example

Polymorphism

Why a parent variable for a child value?

« What happens to the following
program?

int main

{
Parent pl(1, 2);
Child c1(3, 4, 5);
Parent p2 = cl; // OK: 5 is discarded
// Child c2 = pl; // Not OK: no v3
return O;

class Parent
{
protected:
int x;
int y;
public:
Parent (int a, int b)
};
class Child : public Parent
{
protected:
int z;
public:
Child(int a, int b, int c)
: Parent(a, b)
{z=c}

};

: x(a), y() {}

Programming Design — Inheritance and Polymorphism

Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Examples of polymorphism

« For example, we may do this: int main

— A Character variable can {

- - 11 - " 1 ;
store a Warrior or a Warrior w("Alice", 10)

Character c = w;

Wizard ObjeCt' cout << c.getName () << endl; // Alice
— Because a warrior/wizard is return 0;
a character! }
 Alternatively, we may do this int main
with pointers: {

Warrior w("Alice", 10);

Character* c = &w;

cout << c->getName() << endl; // Alice
return O;

Programming Design — Inheritance and Polymorphism 46/ 62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Polymorphism with functions

« Polymorphism is useful with functions:

int printInitial (Character c)

{
string name = c.getName() ;
cout << name[0];

}

int main

{
Warrior alice("Alice", 10);
Wizard bob("Bab", 8);
printInitial (alice) ;
printInitial (bob) ;
return O;

Programming Design — Inheritance and Polymorphism 47 1 62 Ling-Chieh Kung (NTU IM)

Inheritance

An example

Polymorphism with arrays

Polymorphism is useful with arrays:

{

int main

Character* c[3];

c[0] = new Warrior ("Alice", 10);

c[1l] = new Wizard("Sophie", 8);

c[2] = new Warrior ("Amy", 12);

for(int 1 = 0; i < 3; i++)
c[i]->print() ;

for(int 1 = 0; 1 < 3; i+)
delete c[i];

// not delete [] c;

return O;

int main

Character c[3]; // error! Why?
Warrior wl ("Alice", 10);
Wizard w2 ("Sophie", 8);
Warrior w3 ("Amy", 12);

c[0] = wl;
c[l] = w2;
c[2] = w3;

for(int i = 0; i < 3; i+H+)
c[i] .print();
return O;

Programming Design — Inheritance and Polymorphism

48/ 62

Ling-Chieh Kung (NTU IM)

Polymorphism

Inheritance An example Polymorphism

Class Team with Polymorphism

« With polymorphism, we may redefine the class Team

class Team

{

private:
int memberCount;
Character* member[10];

public:
Team() ;
~Team() ;
void addWarrior (string name, int 1v);
void addWizard(string name, int 1v);
void memberBeatMonster (string name, int exp);
void printMember (string name) ;

};

Programming Design — Inheritance and Polymorphism 49 /62 Ling-Chieh Kung (NTU IM)

Inheritance

An example Polymorphism

Class Team with Polymorphism

Team: : Team()
{
memberCount = 0;
for(int i = 0; i < 10; i++)
member[i] = nullptr;
}
Team: : ~Team()
{
for(int 1 = 0;
i < memberCount; i++)
delete member[i];

void Team: :addWarrior (string name, int 1lv)
{
if (memberCount < 10)
{
member [memberCount] = new Warrior (name, 1lv);
memberCount++;
}
}
void Team: :addWizard(string name, int 1lv)
{
if (memberCount < 10)
{
member [memberCount] = new Wizard(name, 1lv);
memberCount++;
}
}

Programming Design — Inheritance and Polymorphism

50/62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Class Team with Polymorphism

void Team: :memberBeatMonster void Team: :printMember (string name)
(string name, int exp) {
{ for(int i = 0; i < mamberCount; i++)
for(int i = 0; i < memberCount; i++) {
{ if (member[i]->getName () =— name)
if (member[i] ->getName () =— name) {
{ member [1]->print() ;
menrber [i] ->beatMonster (exp) ; break;
break; }
} }
} }
}

Programming Design — Inheritance and Polymorphism 51/62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Remaining questions

» We still cannot prevent one from creating int main()
a Character object. character* c[3] ;
« What happens to the following program: c[0] = new Warrior("Alice", 10);
. . . 1] = new Wizard("Sophie", 8);
— No “Warrior ” and “Wizard ” printed ZEZ% - 2:: W;irio,ﬁ(f;’;yf 12));
out. c[0] ->beatMonster (10000) ;
— No experience point accumulated. for(int 1 =0; 1 < 3; iH)
c[i]->print();
* Why? for(int i = 0; i < 3; i+
delete c[i];
return 0O;
}

Programming Design — Inheritance and Polymorphism 52 /62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Invoking an overridden function

« Suppose a parent variable class A int main()
stores a child value (or a L {

: .- public: B b;
pa_rent pplnter pointing to a void a() { cout << "a\n"; } Aa=h;
child object). void £() { cout << "af\n"; A* ap = &b;

« If we use the parent variable |} a.a();

i . }; a.f();
(pointer) to invoke an /] a.b();
overridden function, the class B : public A ap->a() ;
default setting is to invoke the | { ap—>£() ;
parent’s implementation. public: // 3p=>b() ;

. . void b() { cout << "b\n"; } return 0O;

* To invoke the child’s one, we void £() { cout << "bf\n"; }
need virtual functions. }
};

Programming Design — Inheritance and Polymorphism 53/62 Ling-Chieh Kung (NTU IM)

Inheritance An example

Polymorphism

Early binding vs. late binding

e WhenwedoA a = borA* a = &b, we are

using polymorphism.
For A a = b, the system does early binding:

— aoccupies only four bytes for storing i.
— adoes not have a space for storing 3.
— Its type is set to be A at compilation.

— als just a pointer.
— It can point to an A object or a B object.

— Its “type” can be set at the run time.

For A* a = &b, the system does late binding:

class A
{
protected:
int i;
public:
void a() { cout << "a\n"; }
void £() { cout << "af\n"; }
};
class B : public A
{
private:
int j;
public:
void b() { cout << "b\n"; }
void £() { cout << "bf\n"; }

}r

Ling-Chieh Kung (NTU IM)

Programming Design — Inheritance and Polymorphism 54 /62

Inheritance An example Polymorphism

Early binding may discard values

« Why p2.print () must be the |class Parent
> pri ? {
parent class’ print () protected:
int main int x;
{ int y;
Child c(3, 4, 5); public:
Parent p = ¢; // 5 is discarded Parent(int a, int b) : x(a), y(b) {}
p.print(); // which print()? void print() { cout <K x <K<K " " K y; }
return 0; };
} Class Child : public Parent
{
protected:
int z;
public:
Child(int a, int b, int ¢) : P(a, b)
{z=c;}
void print() { cout < z; }
}i

Programming Design — Inheritance and Polymorphism 55/62 Ling-Chieh Kung (NTU IM)

Inheritance

An example

|_ate binding does not discard values

* Isit possible for p2->print ()

class Parent

to be the child class’ print ()? | f
protected:
int main int x;
{ int y;
Child c(3, 4, 5); public: . .
Parent* pPtr = &c; // 5 is good Parent (int a, int b) : x(a), y() {}
pPtr->print(); // which print()? void print() { cout <K x <K<K " " KL y; }
return O; };
} Class Child : public Parent
{
) . protected:
 To invoke the child’s int z;
Implementation, we need to public:
declare virtual functions. Ch?m(mt ai int b, int ¢) : Parent(a, b)
zZ =cC;
void print() { cout < z; }
};
‘ Programming Design — Inheritance and Polymorphism 56 / 62 Ling-Chieh Kung (NTU IM) |

Polymorphism

Inheritance An example Polymorphism

Virtual functions

* If we declare a parent’s class Parent
member function to be t
protected:

V|_rtu_al, Its Invocation int x;
priority will be lower than a int y;

child’s (if we use late public:
binding). Parent(int a, int b) : x(a), y() {}
] virtual void print() { cout <K x << " " KK y; }
— Achild cannot declare a | ;
paren’[’s function as Class Child : public Parent
virtual (it is of no use). |1
protected:
* In summary, we need: int z;
— Late binding + virtual | PaPlic: _ _
f fi Child(int a, int b, int ¢) : Parent(a, b)
unctions. (z=c;)
void print() { cout < z; }

};

Programming Design — Inheritance and Polymorphism 57162 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Virtual functions

* For our Character class, simply declare | int main()
beatMonster () and print () as virtual. |
Character* c[3];
class Character c[0] = new Warrior("Alice", 10);
{ c[1l] = new Wizard("Sophie", 8);
protected: c[2] = new Warrior ("Amy", 12);
// ... c[0] —>beatMonster (10000) ;
public: for(int 1 = 0; i < 3; i+H)
// ... c[i]->print();
virtual void beatMonster (int exp) ; for(int i = 0; i < 3; iH)
virtual void print(); delete c[i];
}; return 0;
}

* Warrior and Wizard override the two
functions. Now their versions get invoked.

Programming Design — Inheritance and Polymorphism 58 /62 Ling-Chieh Kung (NTU IM)

Inheritance An example

Polymorphism

Abstract classes

* The two virtual functions are different in their natures:
— print () is invoked in the children’s implementations.
— beatMonster () should not be invoked by any one.

* We may set beatMonster () to be a pure virtual function:

class Character

{

// ...

virtual void beatMonster (int exp) = 0;
};

— Now we do not need to implement it.
— Moreover, we cannot create Character objects!

Programming Design — Inheritance and Polymorphism 59 /62

Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Polymorphism iIs everywhere

* Recall MyVector, its overloaded operator =, and its child MyVector2D.

class MyVector int main()
{ {

// ... double d[3] = {1, 2, 3};
public: MyVector v1(3, d);

// ... MyVector2D v2(4, 5);

bool operator==(const MyVector& v) const; cout << vl = v2 << endl; // good?
}; return 0;

}

« Why can the program run?

 In fact, we may also compare MyVector2D with MyVector, MyVector2D with
MyVector2D, NNVector With MyVector, NNVector with MyVector2D, etc.

Programming Design — Inheritance and Polymorphism 60/ 62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Polymorphism is everywhere

« The same thing happens to the copy constructor:

int printInitial (Character c)
{
string name = c.getName() ;
cout << name[0];
}
int main
{
Warrior alice("Alice", 10);
Wizard bob("Bab", 8);
printInitial (alice); // Character's copy constructor
printInitial (bob); // Character's copy constructor
return O;

Programming Design — Inheritance and Polymorphism 61 /62 Ling-Chieh Kung (NTU IM)

Inheritance An example Polymorphism

Summary

« Polymorphism is a technique to make our program clearer, more flexible and
more powerful.

— |t is based on inheritance.

— It is tightly related to function overriding, late binding, and virtual
functions.

* The key action 1s to “use a parent pointer to point to a child object”.
« To implement late binding, you need to

— Declare and override virtual functions.

— Do late binding by using parent pointers to point to child objects.

Programming Design — Inheritance and Polymorphism 62 /62 Ling-Chieh Kung (NTU IM)

