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When we use regression to study potential factors for an outcome, the data type of the
dependent variable plays an important role. When the dependent variable is quantitative, we
use ordinary regression, the one we introduced in lectures. When it is qualitative, we cannot use
ordinary regression. Instead, we should use logistic regression. Below we will use one example
to demonstrate how to do logistic regression for binary qualitative variables with R.

Note. See “survival.R” and “survival.txt” for R codes and data.

1 The story and data

Consider Table 1 which contains three columns and 45 rows. The 45 rows record relevant
information of 45 persons who got trapped in a storm during a mountain hiking. Unfortunately,
some of them died due to the storm. We are interested in predicting the survival probability of
a person given her/his gender and age.1 In the female column, 0 means a man and 1 means a
woman. In the survival column, 0 means death and 1 means survival.

Age Gender Survived Age Gender Survived Age Gender Survived

23 Male No 23 Female Yes 15 Male No
40 Female Yes 28 Male Yes 50 Female No
40 Male Yes 15 Female Yes 21 Female Yes
30 Male No 47 Female No 25 Male No
28 Male No 57 Male No 46 Male Yes
40 Male No 20 Female Yes 32 Female Yes
45 Female No 18 Male Yes 30 Male No
62 Male No 25 Male No 25 Male No
65 Male No 60 Male No 25 Male No
45 Female No 25 Male Yes 25 Male No
25 Female No 20 Male Yes 30 Male No
28 Male Yes 32 Male Yes 35 Male No
28 Male No 32 Female Yes 23 Male Yes
23 Male No 24 Female Yes 24 Male No
22 Female Yes 30 Male Yes 25 Female Yes

Table 1: The survival data set

∗Department of Information Management, National Taiwan University; lckung@ntu.edu.tw.
1The data set comes from the textbook The Statistical Sleuth by Ramsey and Schafer. The story has been

modified.
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2 Descriptive statistics

As always, we start from descriptive statistics. We see that the overall survival probability is
20
45 = 44.4%. Moreover, survival or not seems to be affected by gender:

Group Survivals Group size Survival probability

Male 10 30 33.3%
Female 10 15 66.7%

By grouping people into age classes, it seems to us that survival or not is also affected by age:

Age class Survivals Group size Survival probability

[10, 20) 2 3 66.7%
[21, 30) 11 22 50.0%
[31, 40) 4 8 50.0%
[41, 50) 3 7 42.9%
[51, 60) 0 2 0.0%
[61, 70) 0 3 0.0%

These findings are good, but they are just some descriptions of our sample. May we do
better than just descriptive statistics? May we make some inferences about the population?
Finally, may we predict one’s survival probability given one’s age and gender?

3 Why ordinary regression does not work?

How to tackle this problem? Immediately we may want to fit a linear regression model

survivali = β0 + β1agei + β2femalei + εi.

to our sample data. By running

d <- read.table("survival.txt", header = TRUE)

fitWrong <- lm(d$survival ~ d$age + d$female)

summary(fitWrong)

one obtains the regression line

survival = 0.746− 0.013age + 0.319female.

Figure 1 illustrate the regression lines obtained from the ordinary regression fitting. Though
R2 = 0.1642 is low, both variables are significant. The result seems to be reasonable: Being
younger or being a woman makes the predicted value of survival higher. This fits our observation
in the previous section.

However, this is wrong! Consider an 80-year-old man. For him, the predicted survival
“probability” becomes 0.746− 0.013× 80 = −0.294, which is impossible. In general, it is very
easy for an ordinary regression model to generate predicted “probability” not within 0 and 1.
This is why ordinary regression is problematic when the dependent variable is binary.
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Figure 1: Ordinary regression fitting

4 Logistic regression

The right way to do is to run logistic regression. When we want to construct a logistic regression
model, we hypothesize that independent variables xis affect π, the probability for y to be 1, in
the following form:2

log

(
π

1− π

)
= β0 + β1x1 + β2x2 + · · ·+ βpxp.

Given this functional form, the logistic regression model searches for coefficients to make the
curve fit the given data points in the best way. While the details are far beyond the scope of
this course, getting the estimated coefficients is easy in R. All we need to do is to switch from
lm() to glm() with an additional argument binomial:3

fitRight <- glm(d$survival ~ d$age + d$female, binomial)

summary(fitRight)

By executing the above statements, we will get a regression report. While some information is
new, the following part is familiar to us. We then understand that both variables are significant:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.63312 1.11018 1.471 0.1413

d$age -0.07820 0.03728 -2.097 0.0359 *

d$female 1.59729 0.75547 2.114 0.0345 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

2For our example, we only have two independent variables. In general we may have more.
3lm is the abbreviation of “linear model.” glm() is the abbreviation of “generalized linear model.”
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According to the regression report, the estimated curve is

log

(
π

1− π

)
= 1.633− 0.078age + 1.597female, (1)

or equivalently,

π =
exp(1.633− 0.078age + 1.597female)

1 + exp(1.633− 0.078age + 1.597female)
,

where exp(z) means ez for all z ∈ R. Obviously, π computed by the above equation will always
lie in [0, 1]. There is thus no problem for interpreting π as a probability.

Figure 2 depicts the regression curves obtained by logistic regression fitting. Besides ob-
serving that they are indeed bounded by 0 and 1, they can be used directly for prediction. For
example, for the man at 80, we have

π =
exp(1.633− 0.078× 80)

1 + exp(1.633− 0.078× 80)
= 0.0097,

which is no longer the unreasonable −0.294 obtained by ordinary regression. As another exam-
ple, for a woman at 60, we have

π =
exp(1.633− 0.078× 60 + 1.597)

1 + exp(1.633− 0.078× 60 + 1.597)
= 0.1882.

These probabilities can be verified by investigating the two curves in Figure 2. Figure 3 provides
a comparison.

Figure 2: Logistic regression fitting

What implications may we have from the logistic regression model in (1)? Just like ordinary
regression, the significance of the variables is critical. According to the regression report, we
know that both coefficients are significantly nonzero. Their signs then provide useful impli-
cations. In particular, −0.078age suggests that younger people will survive more likely, and
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Figure 3: Comparison of the two types of regression models

1.597female means that women will survive with a higher probability. Again, they fit our intu-
ition, but with a better model, we are now more confident about our findings and conclusions.

In general, we read a logistic regression model in the following way. First, the p-values let
us determine the significance of variables and select a good set of independent variables. The
signs of significant coefficients then allow us to draw qualitative implications. Finally, we may
use the formula itself to do prediction.

5 Model selection

Recall that in ordinary regression, we use R2 and adjusted R2 to assess the usefulness of a
model. In logistic regression, unfortunately, we do not have R2 and adjusted R2. We then rely
on a new concept deviance to evaluate a logistic regression model. For a given model, two types
of deviances should be mentioned:

• The null deviance can be considered as the total estimation errors without using any inde-
pendent variable. The null deviance is the same for all models (as long as the dependent
variable is the same).

• The residual deviance can be considered as the total estimation errors by using the selected
independent variables. Just like adding variables always increases R2, adding additional
variables into an existing model will always reduce the null deviance.

Ideally, the residual deviance should be small.4

Both the null and residual deviances are provided in the regression report. If we execute

4To be more rigorous, the residual deviance should also be close to its degree of freedom. This is beyond the
scope of this article.
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fitRight <- glm(d$survival ~ d$age + d$female, binomial)

summary(fitRight)

we will obtain

Null deviance: 61.827 on 44 degrees of freedom

Residual deviance: 51.256 on 42 degrees of freedom

This tells us that the null deviance is 61.827 and the residual deviance is 51.256. By trying some
other combinations of independent variables, we may obtain their null and residual deviances.
See Table 2 for a comparison. According to Table 2, one conclusion can be made: Because
the residual deviance is smaller, using age only is better than using female only. We may
make this conclusion because their numbers of variables are the same. Nevertheless, we cannot
conclude that model 3 is better than model 1 simply by comparing their residual deviances.
Their numbers of variables are different.

Model Independent variable(s) Null deviance Residual deviance

1 age 61.827 56.291
2 female 61.827 57.286
3 age, age2 61.827 55.822
4 age, female 61.827 51.256
5 age, female, age× female 61.827 47.346

Table 2: Null and residual deviances of various models

It remains to compare models with different numbers of variables. To take the number of
variables into consideration, we may use Akaike Information Criterion (AIC). For each model,
there is an associated AIC, which is also available in the regression report. Table 3 list the AICs
of the five models.

Model Independent variable(s) Null deviance Residual deviance AIC

1 age 61.827 56.291 60.291
2 female 61.827 57.286 61.291
3 age, age2 61.827 55.822 61.822
4 age, female 61.827 51.256 57.256
5 age, female, age× female 61.827 47.346 55.346

Table 3: AICs of various model

One important fact to note is that AIC can only be used to compare nested models, where
two models are nested if one’s variables are form a subset of the other’s. With this in mind, we
can now conclude that model 5 is better than model 4, model 4 is better than either model 1 or
model 2, and model 3 is better than model 1. However, we cannot say that model 4 is better
than model 3 because they are not nested.

In summary:5

• If two models have the same number of variables, compare their residual deviances.

• If two models are nested, compare their AICs.

5Other cases are beyond the scope of this article.
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