# Common Mathematical Notations and Operations 

Ling-Chieh Kung*

September 14, 2015

Note. Throughout this handout, we use $x, y$, and $z$ to denote real numbers or vectors, $n$ and $m$ to denote integers, and $i, j$, and $k$ to denote indices. MS Excel operations/functions are typed in this way. If you find anything helpful that should be added into the list, please let me know. Thank you.

## 1 Mathematical notations

- $\mathbb{N}$ is the set of all natural numbers (positive integers); $\mathbb{Z}$ is the set of all integers; $\mathbb{Q}$ is the set of all rational numbers (which can be written as the ratio of two integers); $\mathbb{R}$ is the set of all real numbers.
- ( ) is a pair of parentheses, [ ] is a pair of square brackets, and \{ \} is a pair of curly brackets.
- $[x, y]$ is the (closed) interval containing all real numbers between $x$ and $y$, including $x$ and $y$. We write $z \in[x, y]$ if $x \leq z \leq y$.
- $(x, y)$ is the open interval containing all real numbers between $x$ and $y$, excluding $x$ and $y$. We write $z \in(x, y)$ if $x<z<y$.
- $[x, y)$ is the right open interval containing all real numbers between $x$ and $y$, including $x$ but excluding $y$. We write $z \in[x, y)$ if $x \leq z<y$.
- $(x, y]$ is the left open interval containing all real numbers between $x$ and $y$, including $y$ but excluding $x$. We write $z \in(x, y]$ if $x<z \leq y$.
- A scalar is a single number; a vector is a sequence of numbers. Sometimes we write $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to represent a vector of length $n$, where $x_{i}$ is the $i$ th element/number in vector $x$.


## 2 Mathematics operations

- $x+y$, read as " $x$ plus $y$," means adding $x$ and $y$ to find their summation. E.g., $5+7$ is 12. In MS Excel, do this by typing $5+7$.
- $x-y$, read as " $x$ minus $y$," means subtracting $y$ from $x$ to find their difference. E.g., $5-7$ is -2 . In MS Excel, do this by typing 5-7.

[^0]- $x y$ or $x \times y$, read as " $x y$ " or " $x$ times $y$," means multiplying $x$ by $y$ to find their product. E.g., $5 \times 7=35$. In MS Excel, do this by typing $5 * 7$.
- $\frac{x}{y}$, read as " $x$ divided by $y$ " or " $x$ over $y$," means dividing $x$ by $y$ to find the ratio of $x$ to $y$. E.g., $\frac{6}{2}=3$. In MS Excel, do this by typing $6 / 2$.
- $\bmod (n, m)$ is the operation for dividing $n$ by $m$ to find the remainder of this division. This is read as " $x$ modulus $y$ " by some people. E.g., $\bmod (10,3)=1$. In MS Excel, do this by typing $\bmod (10,3)$.
- $x^{n}$, read as " $x$ to the power of $n$," means multiplying $x$ for $n$ times to find its $n$th power. E.g., $3^{5}=243$. In MS Excel, do this by typing 3 - 5 or power (3, 5). In particular, $x^{2}$ is read as " $x$ square" while $x^{3}$ is read as " $x$ cube."
- $\sqrt{x}$, read as "square root of $x$," means finding a number $y$ such that $y^{2}=x$. E.g., $\sqrt{9}=3$. In MS Excel, do this by typing sqrt (9).
- $x_{i}$, read just as " $x i$ " or " $x$ sub $i$," means finding the $i$ th element of vector $x$. E.g., if $x=(10,11,12), x_{2}=11$.
- $\sum_{i=1}^{n} x_{i}$, read as "sum from $x_{1}$ to $x_{n}$," means to calculate $x_{1}+x_{2}+\cdots+x_{n}$. E.g., if $x=(10,11,12), \sum_{i=1}^{n} x_{i}=33$. In MS Excel, do this by typing sum(A1:A3) if the three numbers are contained in cells A1 to A3.
- More generally, $\sum_{i=j}^{k} x_{i}$, read as "sum from $x_{j}$ to $x_{k}$," means to calculate $x_{j}+x_{j+1}+\cdots+x_{k}$ for some numbers $j \geq 1$ and $k \leq n$. E.g., if $x=(10,11,12), \sum_{i=2}^{3} x_{i}=23$. In MS Excel, do this by typing sum(A2:A3) if the two numbers are contained in cells A2 and A3. ${ }^{1}$
- $\lfloor x\rfloor$, read as "floor of $x$, ", means rounding down $x$ to the closest integer no greater than $x$. E.g., $\lfloor 1.9\rfloor=1$. In MS Excel, do this by typing floor(1.9, 1), where the second argument is the multiple to which you want to round.
- $\lceil x\rceil$, read as "ceiling of $x$," means rounding up $x$ to the closest integer no less than $x$. E.g., $\lceil 1.1\rceil=2$. In R, do this by typing ceiling(1.1, 1), where the second argument is the multiple to which you want to round.
- $|x|$, read as "the absolute value of $x$," means finding the distance between $x$ and 0 . E.g., $|-5|=5$. In MS Excel, do this by typing abs ( -5 ).
- $n$ !, read as "the factorial of $n$," means finding the product of all positive integers no greater than $n$. E.g., $3!=3 \times 2 \times 1=6$. In MS Excel, do this by typing fact (3).
- $\max \{x, y\}$ and $\min \{x, y\}$, read as "the maximum of $x$ and $y$ " and "the minimum of $x$ and $y$," mean finding the larger and smaller one between $x$ and $y$, respectively. E.g., $\max \{1,4\}=4$ and $\min \{-3,4\}=-3$. In MS Excel, do these by typing $\max (x, y)$ and $\min (x, y)$.
- When $x$ is a vector, $\max _{i=1, \ldots, n}\left\{x_{i}\right\}$ and $\min _{i=1, \ldots, n}\left\{x_{i}\right\}$ are the largest and smallest elements in $x$, respectively. In MS Excel, put the cells containing the vector into the functions max() and $\min ()$.

[^1]
[^0]:    *Department of Information Management, National Taiwan University; lckung@ntu.edu.tw.

[^1]:    ${ }^{1}$ When we have enough spaces, we write $\sum_{i=j}^{k} x_{i}$.

