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Correlation and prediction

» We often try to find correlation among variables.

» For example, prices and sizes of houses:

House 1 2 3 4 5 6

Size (m?2) 75 59 8 65 72 46
Price (§1000) 315 229 355 261 234 216

House 7 8 9 10 11 12

Size (m2) 107 91 75 65 88 59
Price (§1000) 308 306 289 204 265 195

» We may calculate their correlation coefficient as r = 0.729.

» Now given a house whose size is 100 m?, may we predict its price?

: :
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Correlation among more than two variables

» Sometimes we have more than two variables:
» For example, we may also know the number of bedrooms in each house:

House 1 2 3 4 5 6

Size (m?) 75 59 8 65 72 46
Price ($1000) 315 229 355 261 234 216
Bedroom 1 1 2 2 2 1
7 8 9 10 11 12

House
Size (m?) 107 91 75 65 88 59

Price (31000) 308 306 289 204 265 195
Bedroom 3 3 2 1 3 1

» How to summarize the correlation among the three variables?
» How to predict house price based on size and number of bedrooms?

:
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Regression analysis

» Regression is the solution!
> As one of the most widely used tools in Statistics, it discovers:
» Which variables affect a given variable.
» How they affect the target.
» In general, we will predict/estimate one dependent variable by one
or multiple independent variables.
» Independent variables: Potential factors that may affect the outcome.

» Dependent variable: The outcome.
» Independent variables are explanatory variables; the dependent variable

is the response variable.
» As another example, suppose we want to predict the number of arrival
consumers for tomorrow:

» Dependent variable: Number of arrival consumers.
» Independent variables: Weather, holiday or not, promotion or not, etc.

:
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Regression analysis

v

There are multiple types of regression analysis.

v

Based on the number of independent variables:

» Simple regression: One independent variable.
» Multiple regression: More than one independent variables.

v

Independent variables may be quantitative or qualitative.
> In this lecture, we introduce the way of including quantitative
independent variables. Qualitative independent variables will be
introduced in a future lecture.

v

We only talk about ordinary regression, which has a quantitative
dependent variable.
> If the dependent variable is qualitative, advanced techniques (e.g.,
logistic regression) are required.
» Make sure that your dependent variable is quantitative!

: :
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Basic principle

» Consider the price-size relationship again. In the sequel, let x; be the
size and y; be the price of house 7, : = 1,...,12.

Sizes and prices of houses

Size Price g 1
(in m?)  (in $1000) .

46 216 s | ° .

59 229 ° °

59 195 R ° °

65 261 g _ o o

65 204 s &1 o °

72 234 B

75 315

75 289 g

85 355

88 265

91 306

107 308 °1 : : , : :
0 20 40 60 80 100

size (M*2)
» How to relate sizes and prices “in the best way?”
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Linear estimation

» If we believe that the relationship between the two variables is linear,
we will assume that
yi = Bo + Bizi + €.
» B is the intercept of the equation.

» (1 is the slope of the equation.
> ¢; is the random noise for estimating record 1.
» Somehow there is such a formula, but we do not know Sy and f.
» Bo and (1 are the parameter of the population.
» We want to use our sample data (e.g., the information of the twelve

houses) to estimate By and fi. A A
» We want to form two statistics Sy and 1 as our estimates of Bp and S;.

: :
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Linear estimation

» Given the values of /30 and Bl, we will use g; = ,30 + lei as our
estimate of y;.

» Then we have
yi = Bo + Brwi + €,
where ¢; is now interpreted as the estimation error.

» For example, if we choose Bg = 100 and Bl = 2, we have

z; 46 59 59 65 65 72 75 75 85 88 91 107
Yi 216 229 195 261 204 234 315 289 355 265 306 308
100 + 2z, 192 218 218 230 230 244 250 250 270 276 282 314
€; 24 11 —23 31 —26 —10 65 39 85 —11 24 —6

» x; and y; are given. . .
» 100 + 2z; is calculated from x; and our assumed Sy = 100 and 8 = 2.
» The estimation error ¢; is calculated as y; — (100 + 2z;).
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Linear estimation

» Graphically, we are using a straight line to “pass through” those points:

y=100 +2x
8
s
o
o °
S
2 ©
o o
3
2 o~
3
"
>
8
o
T T T T T
20 40 60 80 100
X = size (M"2)
T 46 59 59 65 65 T2 75 75 85 88 91 107
Yi 216 229 195 261 204 234 315 289 355 265 306 308
100 + 2z, 192 218 218 230 230 244 250 250 270 276 282 314
€; 24 11 —23 31 —26 —10 65 39 85 —11 24 —6
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Better estimation

> Is (Bo, B1) = (100,2) good? How about (5o, 51) = (100, 2.4)?

price ($1000)

y=
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y =100 + 2.4x

0 20 40 60 80 100

X = size (M"2)

» We need a way to define the “best” estimation!
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Least square approximation

> §; = fo + Pix; is our estimate of y;.
» We hope €; = y; — ¥; to be as small as possible.

» For all data points, let’s minimize the sum of squared errors (SSE):

n n

Z & = (yi— i) = Z [(yz —(Bo + lei)]z-

i=1 i=1

» The solution of .

N N 2
;}217162 ; [(yi — (Bo + /31:1%)]

is our least square approximation (estimation) of the given data.

| |
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Least square approximation
» For (B9, £1) = (100,2), SSE = 16667.
z; | 46 59 91 107
yi | 216 229 195 306 308
g; | 192 218 218 282 314
e | 576 121 529 576 36

» For (Bo, A1) = (100,2.4), SSE = 15172.76. Better!

T 46 59 59 91 107
Yi 216 229 195 306 308
y; | 2104 241.6 241.6 318.4 356.8
€ | 31.36 158.76 2171.56 153.76  2381.44

» What are the values of the best (BO, Bl)?

Regression Analysis (1)
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Least square approximation

» The least square approximation problem

n

;211; ; [(yi - (Bo + Blmi)] i

has a closed-form formula for the best (Bo, B1):

e i T T
1=1\"2

» We do not care about the formula.
» To calculate the least square coefficients, we use statistical software.

» For our house example, we will get (3o, 81) = (102.717,2.192).
» Its SSE is 13118.63.
» We will never know the true values of Sp and 1. However, according to
our sample data, the best (least square) estimate is (102.717,2.192).
» We tend to believe that 5y = 102.717 and §; = 2.192.

:
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Interpretations

Yy =102.717 + 2.192x

» Our regression model is g
y =102.717 4+ 2.192z. s o .

» Interpretation: When the house g o0

size increases by 1 m?, the price is g ] :

expected to increase by $2,192. > .
» (Bad) interpretation: For a house B

whose size is 0 m?, the price is ]

expected to be $102,717. ' ' ' ‘ ‘ ‘

0 20 40 60 80 100
X = size (M"2)

|
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Linear multiple regression

» In most cases, more than one independent variable may be used to
explain the outcome of the dependent variable.

» For example, consider the number of bedrooms.

» We may take both variables as
independent variables to do linear Price Size

Bedroom

. . 2
multiple regression: (in $1000) (in m?)

315 75 1

229 59 1

Yi = Bo+ Pix1; + Pora; + €. 355 85 2

261 65 2

. . 234 72 2

> y; is the house price (in $1000). 216 46 1

> x1, is the house size (in m2). 308 107 3

> 2o is the number of bedrooms. ggg 3; 3

> ¢; is the random noise. 204 65 1

. . 265 88 3

» Our (least square) estimate is 195 59 1

(Bo, B1, B2) = (82.737,2.854, —15.789).

: :
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Interpretations

» Our regression model is

y = 82.737 + 2.854z1 — 15.789x3.

» When the house size increases by 1 m? (and all other independent
variables are fixed), we expect the price to increase by $2,854.

» When there is one more bedroom (and all other independent variables
are fixed), we expect the price to decrease by $15,789.

» One must interpret the results and determine whether the result is
meaningful by herself/himself.
» The number of bedrooms may not be a good indicator of house price.
» At least not in a linear way.
» We need more than finding coefficients:
» We need to judge the overall quality of a given regression model.
» We may want to compare multiple regression models.
» We must test the significance of regression coefficients.

: :
Regression Analysis (1) 18 /37 Ling-Chich Kung (NTU IM)




Introduction Least square approximation Model validation Variable transformation and selection
00000 000000000000 @0000000 00000000000

Road map

Introduction.

Least square approximation.

Model validation.

Variable transformation and selection.

vV v.v Y

Regression Analysis (1) 19 /37 Ling-Chieh Kung (NTU IM)




Introduction Least square approximation Model validation Variable transformation and selection
00000 000000000000 0e000000 00000000000
: :

Estimation with no model

» For the price-size regression model
y = 102.717 4+ 2.192z,

how good is it?

» In general, for a given regression model
y = Po+ Brx1 + - BrTk,

how to evaluate its overall quality?
» Suppose that we do not do regression. Instead, we (very naively)
2
estimate y; by 4 = ;ﬂ the average of y;s.

» We cannot do worse than that; it can be done without a model.

» How much does our regression model do better than it?

| |
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SSE, SST, and R?

» Without a model, the sum of squared total errors (SST) is

SST =3 (.~ )"
i=1

» With out regression model, the sum of squared errors (SSE) is

n

SSE =) (yi—9:)° =

=1 2

[(yi - (Bo + lei)] 2~

-

1

» The proportion of total variability that is explained by the regression

model is!
SSE

SST”
The larger R?, the better the regression model.
INote that 0 < R? < 1. Why?

| |
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Obtaining R? in R

» Whenever we find the estimated coefficients, we have R2.

» Statistical software includes R? in the regression report.
» For the regression model y = 102.717 + 2.192z, we have R? = 0.5315:

» Around 53% of a house price is determined by its house size.

» If (and only if) there is only one independent variable, then R? = 72,

where r is the correlation coefficient between the dependent and
independent variables.

» —1<r<l1.

» 0<r*=R*<1

| |
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Comparing regression models

» Now we have a way to compare regression models.
» For our example:

Size only Bedroom only Size and bedroom

R*  0.5315 0.29

0.5513

» Using prices only is better than using numbers of bedrooms only.
» Is using prices and bedrooms better?

» In general, adding more variables always increases R?!

> In the worst case, we may set the corresponding coefficients to 0.
» Some variables may actually be meaningless.

» To perform a “fair” comparison and identify those meaningful factors,
we need to adjust R? based on the number of independent variables.

|
Regression Analysis (1)
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Adjusted R?

» The standard way to adjust R? to adjusted R? is

n—1
R, =1———)(1—-R?.
adj (n —k—1 ) ( )
» n is the sample size and k is the number of independent variables used.

» For our example:

Size only Bedroom only Size and bedroom

R? 05315 0.290 0.5513
RZ;  0.4846 0.219 0.4516

» Actually using sizes only results in the best model!

| |
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Testing coefficient significance

» Another important task for validating a regression model is to test the
significance of each coefficient.

v

Recall our model with two independent variables

y = 82.737 4 2.854x1 — 15.789x.

v

Note that 2.854 and —15.789 are solely calculated based on the sample.
We never know whether 57 and (5 are really these two values!

v

In fact, we cannot even be sure that $; and [ are not 0. We need to
test them:

Hoiﬂizo
Haiﬁi #0

We look for a strong enough evidence showing that 8; # 0.

v

: :
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Testing coefficient significance by R

» The testing results are provided in regression reports.

» Statistical software tells us:

Coefficients ~ Standard Error ¢ Stat p-value

Intercept 82.737 59.873 1.382 0.200
Size 2.854 1.247 2.289 0.048 ¥
Bedroom —15.789 25.056 —0.630 0.544

» These p-values have been multiplied by 2 in a typical report. Simply
compare them with a!

» At a 95% confidence level, we believe that 81 # 0. House size really has
some impact on house price.

» At a 95% confidence level, we have no evidence for 82 # 0. We cannot
conclude that the number of bedrooms has an impact on house price.

> If we use only size as an independent variable, its p-value will be
0.00714. We will be quite confident that it has an impact.

: :
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House age

» The age of a house may also affect its price.

Price Size Bedroom Age
(in $1000)  (in m?) (in years) g4 :
315 75 1 16
229 59 1 20 e
355 85 2 16 1.
261 65 2 15
234 72 2 21 : s
216 46 1 16
308 107 3 15 -
306 91 3 15 i
289 75 2 14 c | .
204 65 1 21 .
265 88 3 15 14 16 18 20 22 24 26
195 59 1 26

> Let’s add age as an independent variable in explaining house prices.

» Because the number of bedroom seems to be unhelpful, let’s ignore it.

| |
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House age

» For house i, let y; be its price, z1; be its size, and z3; be its age. We
assume the following linear relationship:

Yi = Bo + Prx1, + Baxs, + €.

> Software gives us the following regression report:

Coefficients  Standard Error ¢ Stat p-value

Intercept 262.882 83.632 3.143 0.012

Size 1.533 0.628 2.443 0.037 **

Age —6.368 2.881 —2.211 0.054 *
R? = 0.696, Ridj =0.629

» R? goes up from 0.485 (size only) to 0.629. Age is significant at a 10%
significance level. Seems good!

: :
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Nonlinear relationship

» May we do better?

» By looking at the age-price scatter plot
(and our intuition), maybe the impact of
age on price is nonlinear:

> A new house’s value depreciates fast.

» The value depreciates slowly when the
house is old.

> At least this is true for a car.

price

» It is worthwhile to try a capture this
nonlinear relationship.

» For example, we may try to replace house
age by its reciprocal:

1
Yi Zﬁo+51$1,i+52< ) + €.
T3,

| |
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Variable transformation

» To fit
Price Size 1/Age
Yi = ﬁo + lel,i + B2 <x3 ) + € (in $1000)  (in m?)  (in 1/years)

)
315 75 0.063
. 229 59 0.05
to our sample data: 355 o5 0.06%
» Prepare a new column as ——. 261 65 0.067
ase 234 72 0.048
» Input these three columns to software. 216 16 0.063
> Read the report. 308 107 0.067
. . . 306 91 0.067
» We may consider any kind of nonlinear 289 75 0.071
relationship. 204 65 0.048
265 88 0.067
» This technique is called variable 195 59 0.038

transformation.

| |
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The reciprocal of house age

> Software gives us the following regression report:

Coefficients Standard Error t Stat p-value

Intercept 22.905 57.154  0.401 0.698
Size 1.524 0.647  2.356 0.043 **
1/Age 2185.575 1044.497  2.092 0.066 *

R? = 0.685, R2,; = 0.615

» Validation:
» Variables are both significant (at different significance level).
» Using size and a%ge: R? =0.685 and Ridj = 0.615.
» Using size and age: R® = 0.696 and R2,; = 0.629.
» Using size and age better explains house price (at least for the given
sample data).
» The intuition that house value depreciates at different speeds is not
supported by the data.

: :
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A quadratic term

» There are many possible ways to transform a given variable.

» For example, a popular way to model a nonlinear relationship is to
include a quadratic term:

Yi = Bo + Brw1,; + Baxsz + ,3337%’1- + €.

> Software gives us the following regression report:

Coefficients  Standard Error ¢ Stat p-value

Intercept 250.746 324.022 0.774 0.461
Size 1.537 0.675 2.278 0.052 *
Age —5.113 32.376  —0.158 0.878
Age? —0.032 0.818 —0.039 0.970

R? = 0.696, Rgdj =0.583

> Not a good idea for this data set.

: :
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Typical ways of variable transformation

w -
<+ 4
fx)=x
@ f(x) =log(1 + x)
fx) = sqrt(x)
— fx) = x12
= fx) = 1
o~
o -
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Variable selection and model building

» In general, we may have a lot of candidate independent variables.

» Size, number of bedrooms, age, distance to a park, distance to a hospital,
safety in the neighborhood, etc.

» If we consider only linear relationships, for p candidate independent
variables, we have 2P — 1 combinations.

» For each variable, we have many ways to transform it.

> In the next lecture, we will introduce the way of modeling interaction
among independent variables.

» How to find the “best” regression model (if there is one)?

: :
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Variable selection and model building

» There is no “best” model; there are “good” models.
> Some general suggestions:

» Take each independent variable one at a time and observe the
relationship between it and the dependent variable. A scatter plot
helps. Use this to consider variable transformation.

» For each pair of independent variables, check their relationship. If two
are highly correlated, quite likely one is not needed.

» Once a model is built, check the p-values. You may want to remove
insignificant variables (but removing a variable may change the
significance of other variables).

» Go back and forth to try various combinations. Stop when a good
enough one (with high R? and dej and small p-values) is found.
» Software can somewhat automate the process, but its power is limited
(e.g., it cannot decide transformation).

» We may need to find new independent variables.
» Intuitions and experiences may help (or hurt).

: :
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Summary

» With a regression model, we try to identify how independent variables
affect the dependent variable.

» For a regression model, we adopt the least square criterion for estimating
the coefficients.
» Model validation:
» The overall quality of a regression model is decided by its R* and Ridj.
» We may test the significance of independent variables by their p-values.
» Modeling building;:
» Variable transformation.
» Variable selection.
» More topics to introduce:
» How to deal with qualitative independent variables.
» How to model interaction among independent variables.
» How to avoid the endogeneity problem.
» How to apply residual analysis to further validate the model.

: :
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