Statistics I, Fall 2012
 Suggested Solution for Homework 07

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. (a) Its first moment is

$$
\mathbb{E}[X]=\int_{0}^{1} x \cdot 3 x^{2} d x=\left.3\left(\frac{1}{4}\right) x^{4}\right|_{0} ^{1}=\frac{3}{4}
$$

(b) Its third moment is

$$
\mathbb{E}\left[X^{3}\right]=\int_{0}^{1} x^{3} \cdot 3 x^{2} d x=\left.3\left(\frac{1}{6}\right) x^{6}\right|_{0} ^{1}=\frac{1}{2}
$$

(c) First, note that

$$
\mathbb{E}\left[X^{k}\right]=\int_{0}^{1} x^{k} \cdot 3 x^{2} d x=\left.3\left(\frac{1}{k+3}\right) x^{k+3}\right|_{0} ^{1}=\frac{3}{k+3} .
$$

The result then follows.
2. (a) The moment generating function is

$$
m(t)=\mathbb{E}\left[e^{t X}\right]=\int_{0}^{1} e^{t x} \cdot 3 x^{2} d x=3 \int_{0}^{1} e^{t x} x^{2} d x
$$

By integration by parts, we have

$$
\int_{0}^{1} e^{t x} x^{2} d x=\left.\frac{x^{2} e^{t x}}{t}\right|_{0} ^{1}-\frac{2}{t} \int_{0}^{1} x e^{t x} d x=\frac{e^{t}}{t}-\frac{2}{t} \int_{0}^{1} x e^{t x} d x
$$

By another integration by parts, we have

$$
\int_{0}^{1} x e^{t x} d x=\left.\frac{x e^{t x}}{t}\right|_{0} ^{1}-\frac{1}{t} \int_{0}^{1} e^{t x} d x=\frac{e^{t}}{t}-\frac{e^{t}-1}{t^{2}}
$$

It then follows that

$$
m(t)=3\left\{\frac{e^{t}}{t}-\frac{2}{t}\left[\frac{e^{t}}{t}-\frac{e^{t}-1}{t^{2}}\right]\right\}=\frac{3}{t^{3}}\left[\left(t^{2}-2 t+2\right) e^{t}-2\right]
$$

(b) We have

$$
\begin{aligned}
& \frac{d}{d t} m(t)=m^{\prime}(t) \\
= & \left(\frac{-9}{t^{4}}\right)\left[\left(t^{2}-2 t+2\right) e^{t}-2\right]+\left(\frac{3}{t^{3}}\right)\left[(2 t-2) e^{t}+\left(t^{2}-2 t+2\right) e^{t}\right] \\
= & \left(\frac{-9}{t^{4}}\right)\left[\left(t^{2}-2 t+2\right) e^{t}-2\right]+\frac{3 e^{t}}{t} \\
= & \frac{3}{t^{4}}\left[\left(t^{3}-3 t^{2}+6 t-6\right) e^{t}+6\right] .
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
\lim _{t \rightarrow 0} m^{\prime}(t) & =\lim _{t \rightarrow 0} \frac{3\left[\left(t^{3}-3 t^{2}+6 t-6\right) e^{t}+6\right]}{t^{4}} \\
& =\lim _{t \rightarrow 0} \frac{3\left[\left(3 t^{2}-6 t+6\right) e^{t}+\left(t^{3}-3 t^{2}+6 t-6\right) e^{t}\right]}{4 t^{3}} \\
& =\lim _{t \rightarrow 0} \frac{3 t^{3} e^{t}}{4 t^{3}}=\lim _{t \rightarrow 0} \frac{3}{4} e^{t}=\frac{3}{4},
\end{aligned}
$$

which is the first moment as we calculated in Problem 1.
3. The moment generating function of $X \sim \operatorname{Uni}(a, b)$ is

$$
m(t)=\mathbb{E}\left[e^{t X}\right]=\int_{a}^{b} e^{t x} \cdot \frac{1}{b-a} d x=\left.\frac{1}{b-a}\left(\frac{1}{t}\right) e^{t x}\right|_{a} ^{b}=\frac{e^{t b}-e^{t a}}{t(b-a)}
$$

4. (a) The moment generating function of \bar{X} is

$$
\mathbb{E}\left[e^{t \bar{X}}\right]=\mathbb{E}\left[e^{t\left(X_{1}+\cdots X_{n}\right) / n}\right]=\mathbb{E}\left[e^{(t / n) X_{1}+\cdots(t / n) X_{n}}\right]=\mathbb{E}\left[e^{(t / n) X_{1}}\right] \cdots \mathbb{E}\left[e^{(t / n) X_{n}}\right]
$$

where the last equality is due to the independence among $X_{i} \mathrm{~s}$. Now, because $X_{i} \sim \mathrm{ND}(\mu, \sigma)$ for all i, we have

$$
\mathbb{E}\left[e^{t \bar{X}}\right]=\left\{\exp \left[\mu(t / n)+\frac{\sigma^{2}}{2}(t / n)^{2}\right]\right\}^{n}=\left[\exp \left(\mu t+\frac{\sigma^{2} / n}{2} t^{2}\right)\right]
$$

which is the moment generating function of a normal random variable with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$. It then follows that $\bar{X} \sim \operatorname{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.
(b) To see this, recall that \bar{X} itself is a normal random variable. For any normal random variable, its standardization results in a standard normal random variable (according to the proposition of linear functions of normal random variables we proved in the lecture). Therefore, as we know

$$
\bar{X} \sim \mathrm{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)
$$

that proposition implies the desired result.
5. The moment generating function of $X_{1}+X_{2}$ is

$$
\mathbb{E}\left[e^{t\left(X_{1}+X_{2}\right)}\right]=\mathbb{E}\left[e^{t X_{1}} \cdot e^{t X_{2}}\right]=\mathbb{E}\left[e^{t X_{1}}\right] \cdot\left[e^{t X_{2}}\right]
$$

where the last equality is due to the independence between X_{1} and X_{2}. As $X_{i} \sim \operatorname{Bi}\left(n_{i}, p\right), i=1,2$, its moment generating function is $\left[p e^{t}+(1-p)\right]^{n_{i}}$. Therefore, we have

$$
\mathbb{E}\left[e^{t\left(X_{1}+X_{2}\right)}\right]=\left[p e^{t}+(1-p)\right]^{n_{1}} \cdot\left[p e^{t}+(1-p)\right]^{n_{2}}=\left[p e^{t}+(1-p)\right]^{\left(n_{1}+n_{2}\right)}
$$

which is the moment generating function of a binomial random variable with $n_{1}+n_{2}$ trials and probability p. It then follows that $X_{1}+X_{2} \sim \operatorname{Bi}\left(n_{1}+n_{2}, p\right)$.
6. Let \bar{X} be the sample mean and Z be a standard normal random variable.
(a) According to Problem 4a, the distribution of the sample mean is $\bar{X} \sim \operatorname{ND}\left(120, \frac{40}{\sqrt{n}}\right.$.
(b) When $n=16, \bar{X} \sim \mathrm{ND}(120,10)$. The desired probability is

$$
1-\operatorname{Pr}(\bar{X} \in[114,126])=1-\operatorname{Pr}(Z \in[-0.6,0.6]) \approx 1-(0.726-0.274)=0.549
$$

(c) When $n=100, \bar{X} \sim \mathrm{ND}(120,4)$. The desired probability is

$$
1-\operatorname{Pr}(\bar{X} \in[114,126])=1-\operatorname{Pr}(Z \in[-1.5,1.5]) \approx 1-(0.933-0.067)=0.134
$$

(d) Given any sample size n, we want

$$
1-\operatorname{Pr}(\bar{X} \in[114,126])=1-\operatorname{Pr}\left(Z \in\left[\frac{-6}{40 / \sqrt{n}}, \frac{6}{40 / \sqrt{n}}\right]\right) \leq 0.01
$$

i.e., $\operatorname{Pr}\left(Z>\frac{6}{40 / \sqrt{n}}\right)<0.005$. This requires

$$
\frac{6}{40 / \sqrt{n}} \geq 2.576 \quad \Leftrightarrow \quad \sqrt{n} \geq 2.576 \times \frac{40}{6} \approx 17.17 \quad \Leftrightarrow \quad n \geq 294.88
$$

The smallest sample size allowed is thus 295.

