
Algorithms [Compiled on May 18, 2007] Spring 2007

Suggested Solutions to Midterm Problems

Problems

1. Let a1, a2, · · · , an be positive real numbers such that a1a2 · · · an = 1. Prove by induction
that (1+ a1)(1+ a2) · · · (1+ an) ≥ 2n. (Hint: In the inductive step, try introducing a new
variable that replaces two chosen numbers from the sequence.)

Solution. The proof is by induction on n.

Base case (n = 1): a1 = 1. So, (1 + a1) = 2 ≥ 21.

Induction step (n > 1): In any sequence a1, a2, · · · , an (n > 1) of positive real numbers
where a1a2 · · · an = 1, there must exist two numbers ai and aj such that ai ≥ 1 and aj ≤ 1.
Without loss of generality, we assume that the two numbers are an−1 and an (this can
always be achieved by swapping numbers in the sequence). As (1− an−1)(1− an) ≤ 0, it
follows that an−1 + an ≥ 1 + an−1an. Let a′n−1 be the number equal to an−1an (which is
also a positive real number) so that a1a2 · · · an−2a

′
n−1 = a1a2 · · · an−2an−1an = 1.

(1 + a1)(1 + a2) · · · (1 + an−2)(1 + an−1)(1 + an) = (1 + a1)(1 + a2) · · · (1 + an−2)(1 +
an−1 + an + an−1an) ≥ (1 + a1)(1 + a2) · · · (1 + an−2)((1 + an−1an) + (1 + an−1an)) =
2(1 + a1)(1 + a2) · · · (1 + an−2)(1 + an−1an) = 2(1 + a1)(1 + a2) · · · (1 + an−2)(1 + a′n−1),
which from the induction hypothesis ≥ 2× 2n−1 = 2n. 2

2. Consider a round-robin tournament among n players. In the tournament, each player
plays once against all other n−1 players. There are no draws, i.e., for a match between A

and B, the result is either A beat B or B beat A. Prove by induction that, after a round-
robin tournament, it is always possible to arrange the n players in an order p1, p2, · · · , pn

such that p1 beat p2, p2 beat p3, · · ·, and pn−1 beat pn. (Note: the “beat” relation, unlike
“≥”, is not transitive.)

Solution. The proof is by induction on the number n of players.

Base case (n = 2): There are exactly two players, say A and B. Either A beat B, in
which case we order them as A,B, or B beat A, in which case we order them as B,A.

Induction step (n > 2): Pick any of the n players, say A. From the induction hypothesis,
the other n− 1 players can be ordered as p1, p2, · · · , pn−1 such that p1 beat p2, p2 beat p3,
· · ·, and pn−2 beat pn−1. We now exam the result of the match played between A and p1.
If A beat p1, then we get a satisfying order A, p1, p2, · · · , pn−1. Otherwise (p1 beat A), we
continue to exam the result of the match played between A and p2. If A beat p2, then we
get a satisfying order p1, A, p2, · · · , pn−1. Otherwise (p2 beat A), we continue as before.
We end up either with p1, p2, · · · , pi−1, A, pi, · · · , pn−1 for some i ≤ n − 1 or eventually
with p1, p2, · · · , pn−1, A if A is beaten by every other player, in particular pn−1. 2

1



3. Below is an algorithm for solving a variant of the Towers of Hanoi puzzle with an additional
fourth peg D; Towers Hanoi is an algorithm for the original puzzle.

Algorithm Four_Towers_Hanoi(A,B,C,D,n);

begin

if n<=2 then

Towers_Hanoi(A,B,C,n);

else

Four_Towers_Hanoi(A,D,B,C,n-2);

Towers_Hanoi(A,B,C,2);

Four_Towers_Hanoi(D,B,C,A,n-2);

end;

Consider alternatives of first moving n − k disks (for some value of k, not necessarily
2) to D. Let T (n) denote the number of moves needed for n disks. Write a recurrence
relation for T (n) with k as a parameter. Can you tell which value of k will be the best,
i.e., resulting in a smaller asymptotic upper bound for T (n)? Why?

Solution. The base case Towers Hanoi(A,B,C,n), where k ≥ n ≥ 1, takes 2n − 1 moves.
A recurrence relation for T (n) is obtained as follows:

{
T (n) = 2n − 1 , for k ≥ n ≥ 1
T (n) = 2T (n− k) + T (k) , for n > k

For n > k,

T (n) = 2T (n− k) + 2k − 1
2T (n− k) = 2(2T (n− 2k) + 2k − 1) = 22T (n− 2k) + 2(2k − 1)

22T (n− 2k) = 22(2T (n− 3k) + 2k − 1) = 23T (n− 3k) + 22(2k − 1)
· · · · · ·

2i−1T (n− (i− 1)k) = 2iT (n− ik) + 2i−1(2k − 1) = 2i(2n−ik − 1) + 2i−1(2k − 1)
T (n) = 2i(2n−ik − 1) + (2i−1 + 2i−2 + · · ·+ 1)(2k − 1)

where k ≥ (n− ik) ≥ 1.

For an asymptotic analysis, let us look at the case when n is a multiple of k, in which case
n− ik must equal k.

T (n) = 2i(2n−ik − 1) + (2i−1 + 2i−2 + · · ·+ 1)(2k − 1)
= 2i(2k − 1) + (2i−1 + 2i−2 + · · ·+ 1)(2k − 1)
= (2i + 2i−1 + · · ·+ 1)(2k − 1)
= (2

n−k
k

+1 − 1)(2k − 1)
= 2

n−k
k

+k+1 − 2
n−k

k
+1 − 2k + 1

A value of k that minimizes n−k
k +k will also minimize T (n). The rest is left as an exercise.

2

2



4. In the implementation of an AVL tree, a rebalancing process using rotation operations
may be needed after an insert or delete. Design the first part of a procedure for
insert, up to the point when the node where a rotation is needed (i,e., the critical node)
is determined (when rebalancing is needed). You are not required to design the part for
rotation. Please present your procedure in an adequate pseudo code and make assumptions
wherever necessary.

Solution. (Wen-Chin Chan)

Algorithm insert(node, x)
begin

if node = null then
node := new Node(x)
node.balance := 0
node.height := 0

else if x < node.value then
insert(node.left, x)
if node.height < node.left.height + 1 then

node.height := node.left.height + 1
node.balance := node.left.height− node.right.height

if node.balance = 2 then
if node.left.balance = 1 then

print ”Single Rotate”
else print ”Double Rotate”

else /* x > node.value

insert(node.right, x)
if node.height < node.right.height + 1 then

node.height := node.right.height + 1
node.balance := node.left.height− node.right.height

if node.balance = −2 then
if node.right.balance = −1 then

print ”Single Rotate”
else print ”Double Rotate”

end

2

5. Show all intermediate and the final AVL trees formed by inserting the numbers 4, 5, 6, 1,
2, and 3 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If a rotation is performed during an insertion, please also show the tree
before the rotation.

3



Solution. (Chi-Jian Luo)

4 4

5

4

5

6

4

5

6

1

4

5

6insert 5// insert 6// single rotation// insert 1//
//

//
//

//

//
//

���� //
//

����

���� //
//

1

4

5

6

2

1

2

5

4

6

1

2

5

4

6

3

1

2 5

4

63

double rotation//
����

����

//
//

//
//

insert 3//
����

����

//
//

//
//

��
��

double rotation//
���� //

//

���� //
//

//
//

insert 2//
����

���� //
//

//
//

2

6. Design an efficient algorithm that, given an array A of n integers and an integer x,
determine whether A contains two integers whose sum is exactly x. Please present your
algorithm in an adequate pseudo code and make assumptions wherever necessary. Give
an analysis of its time complexity. The more efficient your algorithm is, the more points
you will be credited for this problem.

Solution. The straightforward solution of trying every pair in A would take O(n2) time,
as there are n(n−1)

2 possible pairs. When A is sorted (in increasing order), finding the pair
(if it exists) can be done much more efficiently as follows: If A[1] + A[n] < x, then A[1]
cannot be one of the pair we are looking for, as A[1] + A[j] will be smaller than x for any
j ≤ n. On the other hand, if A[1] + A[n] > x, then A[n] cannot be one of the pair we
are looking for, as A[i] + A[n] will be greater than x for any i ≥ 1. In either case, we can
eliminate one element. So, we sort A first with, for example, the heapsort algorithm and
then invoke the procedure below.

procedure Find Pair (A,n, x);
begin

i := 1;
j := n;
while i < j do

if A[i] + A[j] = x then

break;
if A[i] + A[j] < x then

i := i + 1;
else j := j − 1;

if i < j then

print i, j;
else print “no solution”

end

4



The while loop will be executed at most n−1 times, hence the running time of the proce-
dure is O(n). Together with the sorting part, the whole algorithm will run in O(n log n)
time. 2

7. The Knapsack Problem is defined as follows: Given a set S of n items, where the ith item
has an integer size S[i], and an integer K, find a subset of the items whose sizes sum to
exactly K or determine that no such subset exists.

Below is an algorithm for determining whether a solution to the problem exists.

Algorithm Knapsack (S, K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do

P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then

if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

(a) Design an algorithm to recover the solution recorded in the array P . (5 points)

Solution.

Procedure Print Solution (S, P, n, K);
begin

if ¬P [n, K].exist then

print “no solution”
else i := n;

k := K;
while k > 0 do

if P [i, k].belong = true then

print i;
k := k − S[i];

i := i− 1
end

5



2

(b) Modify the given algorithm to solve a variation of the knapsack problem where each
item has an unlimited supply. (10 points)

Solution. Insert “P [0, 0].belong := 0;” after “P [0, 0].exist := true;” and modify the
last five lines before “end” as follows:

P [i, k].belong := 0
else if k − S[i] ≥ 0 then

if P [i, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := P [i, k − S[i]].belong + 1

2

8. Let x1, x2, · · · , xn be a sequence of real numbers (not necessarily positive). Design an O(n)
algorithm to find the subsequence xi, xi+1, · · · , xj (of consecutive elements) such that the
product of the numbers in it is maximum over all consecutive subsequences. The product
of the empty subsequence is defined to be 1. Please present your algorithm in an adequate
pseudo code and make assumptions wherever necessary.

Solution. (Wen-Chin Chan)

Algorithm Maximum Consecutive Subsequence(X,n)
begin

Global Max := 1;
Suffix Max := 1;
Suffix Min := 1;
for i := 1 to n do

if X[i] > 0 then
if Suffix Max×X[i] > Global Max then

Suffix Max := Suffix Max×X[i];
Global Max := Suffix Max;
Suffix Min := Suffix Min×X[i];
if Suffix Min ≥ 0 then

Suffix Min := 1;
else

Suffix Max := Suffix Max×X[i];
Suffix Min := Suffix Min×X[i];
if Suffix Max < 1 then

Suffix Max := 1;
if Suffix Min ≥ 0 then

6



Suffix Min := 1;
else if X[i] < 0 then

if Suffix Min×X[i] > Global Max then
Global Max := Suffix Min×X[i];
Suffix Min := Suffix Max×X[i];
Suffix Max := Global Max;

else
Suffix Max := Suffix Max×X[i];
Suffix Min := Suffix Min×X[i];
swap(Suffix Max, Suffix Min);
if Suffix Max < 1 then

Suffix Max := 1;
if Suffix Min ≥ 0 then

Suffix Min := 1;
else /* X[i] = 0 */

Suffix Max := 1;
Suffix Min := 1;

end

2

9. Consider rearranging the following array into a max heap.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
8 2 3 5 12 14 7 1 6 4 10 15 13 9 11

(a) Design a systematic procedure for performing this task. Please present your proce-
dure in an adequate pseudo code and make assumptions wherever necessary. (10 points)

Solution. There are two approaches: top-down and bottom-up. We have discussed
both in class. Below is an algorithm using the bottom-up approach.

Algorithm Build_Heap(A,n);

begin

for i := n DIV 2 downto 1 do

parent := i;

child1 := 2*parent;

child2 := 2*parent + 1;

if child2 > n then child2 := child1;

if A[child1]>A[child2] then maxchild := child1

else maxchild := child2;

while maxchild<=n and A[parent]<A[maxchild] do

swap(A[parent],A[maxchild]);

7



parent := maxchild;

child1 := 2*parent;

child2 := 2*parent + 1;

if child2 > n then child2 := child1;

if A[child1]>A[child2] then maxchild := child1

else maxchild := child2;

end;

end;

end;

2

(b) The procedure above most likely will consist of a number of rounds. Given the above
input, please show the result (i.e., the contents of the array) after each round until
it becomes a heap. (5 points)

Solution. (Wen-Chin Chan)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
8 2 3 5 12 14 7 1 6 4 10 15 13 9 11
8 2 3 5 12 14 11 1 6 4 10 15 13 9 11
8 2 3 5 12 15 11 1 6 4 10 14 13 9 7
8 2 3 5 12 15 11 1 6 4 10 14 13 9 7
8 2 3 6 12 15 11 1 5 4 10 14 13 9 7
8 2 15 6 12 14 11 1 5 4 10 3 13 9 7
8 12 15 6 10 14 11 1 5 4 2 3 13 9 7
15 12 14 6 10 13 11 1 5 4 2 3 8 9 7

2

8


