Algorithms Spring 1996

Suggested Solutions to Midterm Problems

1. Prove by induction that any tree can be colored with two colors such that
each parent is in a different color from its children.

Solution. The proof is by induction on the number n of nodes in the tree.

Base case: When n = 1, the only node can be colored in either of the two

colors.

Induction step: Consider a tree 7" with n = k 4+ 1 (k > 1) nodes. We
select a leaf node v in T and delete v (along with the edge connecting v
to its parent) from T' to obtain a tree T’ with & nodes. By the induction
hypothesis, T’ can be colored with two colors such that each parent isin a
different color from its children. Now, color node v in a different color from
its parent. Since v is the parent of no other nodes, we have successfully

obtained a proper coloring for T'. This completes the induction step. O

2. Construct a gray code of length [log, 18] (= 5) for 18 objects. Show how
the gray code is constructed from gray codes of smaller lengths.

Solution. Let (cy,ca, .. .,cn)R denote the list ¢,, cp_1,...,c1.

Code of length 1 for 2 objects: 0, 1.

Code #1 of length 2 for 2 objects: 00,01.

Code #2 of length 2 for 2 objects: 10, 11.

Code of length 2 for 4 objects: 00,01, (10, 11)%.

Code of length 2 for 4 objects: 00,01, 11, 10.

Code #1 of length 3 for 4 objects: 000,001,011, 010.

Code #2 of length 3 for 4 objects: 100,101,111, 110.

Code of length 3 for 8 objects: 000,001,011,010, (100,101,111, 110)%.

Code of length 3 for 8 objects: 000,001,011,010,110,111, 101, 100.

Code of length 4 for 9 objects: 0000, 0001,0011,0010,0110,0111,0101,0100,1100.

(open)

Code #1 of length 5 for 9 objects: 00000, 00001,00011,00010,00110,00111,00101,00100,01100.
Code #2 of length 5 for 9 objects: 10000, 10001, 10011, 10010, 10110,10111,10101,10100,11100.
Code of length 5 for 18 objects: 00000, 00001,00011, 00010,00110,00111,00101,00100,01100,
(10000, 10001,10011,10010, 10110, 10111,10101, 10100, 11100)*.

Code of length 5 for 18 objects: 00000, 00001,00011, 00010,00110,00111,00101,00100,01100,
11100, 10100, 10101,10111,10110, 10010, 10011, 10001, 10000.

Note that all the gray codes above are closed, except the ones for 9 objects.
O

3. Consider the following program segment in the celebrity algorithm.

i:=1;
j o= 2;
next := 3;

while next <= n+l1 do
if Know[i,j] then i:= next
else j := next;
next := next + 1;
end;
if 1 = n+1 then candidate := j

else candidate := i;

(a) Find a loop invariant for the while loop that is sufficient to show that
candidate will be the only possible candidate for the celebrity after the
execution of the segment.

(b) Prove that the loop invariant found above is indeed a loop invariant.
Solution. (a) An appropriate loop invariant is “if k& is the celebrity, then
k=1, k=7 ornext <k <n” (plus 1 < i < next, 2 < j < neuxt,
3 < next < n+ 2, which is omitted for brevity).

(b) We need to show that (1) the assertion is true at the beginning of the
loop and (2) given that the assertion is true and the condition of the while
loop holds, the assertion will still be true after the loop body is executed.
(1) At the beginning of the loop, i = 1, j = 2, and nezt = 3. Apparently,
if k is the celebrity, then 1 < k& < n and hence k=1=14, k=2=j, or
next =3 < k <mn.

(2) Now we assume that the assertion “if & is the celebrity, then & = 7,
k= 7,or next < k < n”istrue at the next iteration and the loop condition
holds, i.e., next < n+1. Let ¢, 7/, and next’ denote respectively the values
of ¢, 7, and next after the iteration. We need to show that “if k is the
celebrity, then £ =4', k = j', or next’ < k < n”. From the loop body, we

deduce the following relationship:

v next if Knowli, j]
R otherwise

s) next if =Knowli,j]
J = 7 otherwise

next’ = next + 1

There are two cases to consider: Know[i, j] and =Know[i, j]. In the first
case, ¢ cannot be the celebrity. So, the truth of “if £ is the celebrity, then
k=1, k=7, or next <k <n” implies that of “if k£ is the celebrity, then
k = j, or next < k < n”, which is equivalent to “if k is the celebrity,
then k& = j, k = next, or next +1 < k < n”. Since ¢/ = next, j' = j and
next’ = next + 1, it follows that “if k& is the celebrity, then k& = ¢/, k = j',
or next’ < k < n”, which concludes the first case. The second case be

carried out in an analogous manner. |

. (a) What is the result of merging the following two skylines: (1,8,4,11,9,0,12,6,18,15,22)

and (3,7,13,4,16,10,24). (5 points)
Solution. (1,8,4,11,9,7,13,6,16,10,18,15,22,10,24). 0
(b) Give an algorithm for merging two skylines. (10 points
Solution. Left as a programming exercise. |

. In the towers of Hanoi puzzle, there are three pegs A, B, and C, with n
(generalizing the original eight) disks of different sizes stacked in decreas-
ing order on peg A. To objective is to transfer all the disks on peg A to
peg B, moving one disk at a time (from one peg to one of the other two)
and never having a larger disk stacked upon a smaller one.

(a) Give an algorithm to solve the puzzle.

Solution.

Algorithm Towers_Hanoi(4,B,C,n);
begin
if n=1 then
pop x from A and push x to B
else
Towers_Hanoi(A,C,B,n-1);
pop x from A and push x to B;
Towers_Hanoi(C,B,A,n-1);

end;

(b) Compute the total number of moves in the algorithm.
Solution. We count “pop x from A and push x to B” as one move. Let

T(n) denote the number of moves required for n disks.

1 ifn=1
T(”)_{ MM(n—1)+1 ifn>2

Solving the equation, we get T'(n) = 2" — 1, for n > 1. O

. (a) Apply the partition algorithm in quicksort to the following array (as-

suming that the first element is chosen as the pivot).

(8]2[5]1nfo12[1]15][7[3]13]4]10][16[14]6]

Show the result after each exchange (swap) operation.

Solution.
812151119121 |15 7 3 (13410 |16| 14| 6
81256 |9|12|1 |15 7 3 (1341016 14|11
82|56 412|115 7 3 (1391016 14| 11
81256 |43 |1]15| 7 [12|13 |9 |10 |16 14| 11
81256 |43 |17 (15|12 |13 |9 (10|16 14| 11
712|516 |43 |18 1512|139 |10 |16 |14 | 11

The pair of elements swapped in each step are typeset in boldface.

a

(b) Apply the quicksort algorithm to the above array. Show the result

after each partition operation.

Solution.

(S[2[5[T[9[12[1]15] 7[5 [13[4[10[i6]14]5]
| 7]2]5]6 43]1][8]15]12][13] 9]10][16] 1411

[7]2]5]6 43 [7][8]15]12][13] 9 [10][16] 1411
(1]2]5]6 4|3 |78 |15]12]13]9[10]16][14]11
(125643 [7[8]15]12][13] 9 [10][16] 1411
(124356 [7][8]15]12][13] 9 [10][16] 1411
(1[2]3]4 |56 |78 |ms[12]13[9]10[16]14]11
(1]2[3]4 5|6 [7][8|14]12[13]9 [10][11][15]16
(1]2[3]4 5|6 [7][8|11]12[13]9]10][14][15]16
(1]2[3]4 5|6 [7][8]9]10[11]13]12][14[15]16 |
(1]2[3]4 5|6 [7[8]9 10[11]13]12][14][15]16 |
(1[2]3[4|5][6 |78 |9 [10[11][12]13][14][15]16 |

The element that is serving as the pivot in the next partition step is

typeset in italic. Every element that has served as a pivot is typeset in

boldface.
O

. (a) Rearrange the following array into a heap using the bottom-up ap-

proach.

2 3 4 5 6 7 8 9 10 11 12 13 14

15

(2 |8 |5 J11]9 J12]1 [15[7 [3 [13]4 [10 |14 |6

Show the result after each element is added to the part of array that

already satisfies the heap property. (5 points)
Solution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(2 |8 |5 J11]9 J12]7 [15[7 [3 [13]4 [10 |14 |6 |
(2 |8 |5 J11]9 [12]14[15[7 [3 [13]4 J10 |1 [6 |
(2 |8 |5 J11]9 J12 |14 [15[7 [3 [13]4 J10 |1 |6 |
(2 |8 |5 [1312 |14 [15[7 [3 [9 [4 101 [6 |
(2 |8 |5 J15 |13 12 |14 [11[7 [3 [9 [4 [10 |1 [6 |
(2 |8 J1a]15 J13 12 |6 [11[7 [3 [9 [4 J10 |1 |5 |
|2 15)14 J11 |13 [12 |6 [8 [7 [3 [9 [4 J10 |1 [5 |
(15 (13 |14 [11 |9 [12 |6 [8 [7 [3 [2 [4 J10 |1 [5 |

The element under consideration in each insertion step is typeset in italic.

The elements that are relocated after each insertion step are typeset in

boldface.

(b) Give the bottom-up heap-building algorithm (in pseudo code).

points)

Solution.

Algorithm Build_Heap(4,n);

begin
for i := n DIV 2 downto 1 do
parent := i;
childl := 2%parent;
child2 := 2%parent + 1;

if child2 > n then child2 := childi;

if A[child1]>A[child2] then maxchild := childil

else maxchild := child2;

while maxchild<=n and A[parent]<A[maxchild] do
swap (A[parent] ,A[maxchild]);

parent := maxchild;
childl := 2%parent;
child2 := 2%*parent + 1;

if child2 > n then child2 := childi;

if A[child1]>A[child2] then maxchild := childil

else maxchild := child2;

end;

a

(10

end;

end;
O

. (a) Compute the nezt table (as in the KMP algorithm) for the string
ababcababdab.

Solution.
1 2 3 4 5 6 7 8 9 10 11 12
a b a b ¢ a b a b d a
-1 0 01 2 0 1 2 3 4 0 1

a

(b) Modify the KMP algorithm to find the longest prefix of string B that
matches a substring of A, assuming the nezt table for string B is given.

Solution.

Algorithm Longest_Prefix(A,n,B,m);

begin
i:=1;
j o= 1;
Start := 0;

MaxLength := O;
while MaxLength<m and i<=n do
if A[i] = B[j] then

i=1+1;
j=jaa
else

if (j-1)>MaxLength then
MaxLength := j - 1;

Start := 1 - j;
j := next[j] + 1;
if j=0 then

j =1

i:=1 + 1;

if j=m+1 then
MaxLength := m;
Start := i - m;
end;

end;

9. Given two strings baa and beba, compute the minimal cost matrix C[0..3,0..4]
for changing the first string character by character to the second one.
Solution.

L Joft]2[3[4]
0]1]2]|3]|4

W N = O

1
2
3

N = O

1123
1122
2122

