
Algorithms [June 18, 2013] Spring 2013

Final

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Consider the Knapsack (Subset Sum) Problem: Given a set S of n items, where
the i-th item has an integer size S[i], and an integer K, find a subset of the items
whose sizes sum to exactly K or determine that no such subset exists.

We have discussed in class two approaches to implementing a solution that we
designed by induction: one uses dynamic programming (see the Appendix), while
the other uses recursive function calls.

Suppose there are 5 items, with sizes 2, 3, 4, 6, 7, and we are looking for a subset
whose sizes sum to 14. Assuming recursive function calls are used, please give the
two-dimension table P whose entries are filled with -, O, I, or left blank when the
algorithm terminates. Which entries of P [n,K] are visited/computed more than
once? Please mark those entries in the table.

2. Consider the next table as in the KMP algorithm for string B[1..9] = abaababaa.

1 2 3 4 5 6 7 8 9
a b a a b a b a a
−1 0 0 1 1 2 3 2 3

Suppose that, during an execution of the KMP algorithm, B[6] (which is an a) is
being compared with a letter in A, say A[i], which is not an a and so the matching
fails. The algorithm will next try to compare B[next [6] + 1], i.e., B[3] which is also
an a, with A[i]. The matching is bound to fail for the same reason. This comparison
could have been avoided, as we know from B itself that B[6] equals B[3] and, if
B[6] does not match A[i], then B[3] certainly will not either. B[5], B[8], and B[9]
all have the same problem, but B[7] does not. Please adapt the computation of the
next table, reproduced below, so that such wasted comparisons can be avoided.

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
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next[i] := j
end

3. Given as input a connected undirected graph G, a spanning tree T of G, and a
vertex v, design an algorithm to determine whether T is a valid DFS tree of G
rooted at v. In other words, determine whether T can be the output of DFS
under some order of the edges starting with v. Please present your algorithm in an
adequate pseudo code and make assumptions wherever necessary. Explain why the
algorithm is correct and give an analysis of its time complexity. The more efficient
your algorithm is, the more points you get for this problem.

4. Consider Dijkstra’s algorithm for single-source shortest paths as shown below. You
may find in the literature two bounds, namely O(|V |2) and O((|E| + |V |) log |V |),
for its time complexity. Why is this so? What does this difference imply?

Algorithm Single Source Shortest Paths(G, v);
begin

for all vertices w do
w.mark := false;
w.SP := ∞;

v.SP := 0;
while there exists an unmarked vertex do

let w be an unmarked vertex s.t. w.SP is minimal;
w.mark := true;
for all edges (w, z) such that z is unmarked do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z)

end

5. Let G = (V,E) be a connected weighted undirected graph and T be a minimum-
cost spanning tree (MCST) of G. Suppose that the cost of one edge {u, v} in G
is increased ; {u, v} may or may not belong to T . Design an algorithm either to
find a new MCST or to determine that T is still an MCST. The more efficient your
algorithm is, the more points you will be credited for this problem. Explain why
your algorithm is correct and analyze its time complexity.

6. Finding a small vertex cover for an arbitrary undirected graph is difficult, but is
much easier for trees; a vertex cover of a graph G is a set of vertices such that every
edge in G is incident to at least one of these vertices. Design an efficient algorithm
to find a minimum-size vertex cover for a given tree. Please present your algorithm
in an adequate pseudo code and make assumptions wherever necessary. The more
efficient your algorithm is, the more points you will be credited for this problem.
Explain why your algorithm is correct and give an analysis of its time complexity.

7. Below is a solution to the single-source shortest path problem using the dynamic
programming approach, which we have discussed in class:
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Denote by Dl(u) the length of a shortest path from v (the source) to u containing
at most l edges; particularly, Dn−1(u) is the length of a shortest path from v to u
(with no restrictions).

D1(u) =


length(v, u) if (v, u) ∈ E
0 if u = v
∞ otherwise

Dl(u) = min{Dl−1(u), min
(u′,u)∈E

{Dl−1(u′) + length(u′, u)}},

2 ≤ l ≤ n− 1

Please explain why the solution allows edges with a negative weight (as long as there
is no cycle with a negative weight). How is this different from Dijkstra’s algorithm?
Please explain.

8. In the proof (discussed in class) of the NP-hardness of the 3SAT problem by re-
duction from the SAT problem, we convert an arbitrary boolean expression in CNF
(input of the SAT problem) to a boolean expression in 3CNF (where each clause
has exactly three literals).

(a) Please illustrate the conversion by giving the boolean expression that will be
obtained from the following boolean expression:

(w + x + y + z) · (v + w + x + y + z) · (v + y).

(b) The original boolean expression is satisfiable. As a demonstration of how the
reduction works, please use the resulting boolean expression to show that it
indeed the case.

9. To prove that “P = NP” (which seems unlikely though), it suffices to show that
some NP-complete problem is in P. Why? Please explain.

10. The (standard) knapsack problem is as follows.

Given a set X, where each element x ∈ X has an associated size s(x) and
value v(x), and two other numbers S and V , is there a subset B ⊆ X
whose total size is ≤ S and whose total value is ≥ V ?

Prove that the knapsack problem is NP-complete. (Hint: by reduction from the
partition problem.)

Appendix

• Below is an algorithm for determining whether a solution to the Knapsack (Subset
Sum) Problem exists.
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Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• The partition problem: given a set X where each element x ∈ X has an associated
size s(x), is it possible to partition the set into two subsets with exactly the same
total size?

The partition problem is NP-complete.
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