Algorithms [June 17, 2014] Spring 2014

Final

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Consider the following algorithm that, given a sorted sequence of distinct integers
aj,as, -+, a, (stored in an array A), determines whether there exists an index ¢
such that a; = 7.

Algorithm Special Binary_Search (A, n);
begin

Position := Special _Find(1,n);
end

function Special Find (Left, Right) : integer;
begin
if Left = Right then
if A[Left] = Left then Special _Find := Left
else Special_Find := 0
else
Middle := | LeltHtakt |,
if A[Middle] < Middle then
Special _Find := Special _Find(Middle 4+ 1, Right)
else
Special _Find := Special _Find(Left, Middle)
end

Draw a decision tree of the algorithm for the case of input size six, i.e., n = 6.

2. Consider the following algorithm that computes the square of the input number by
using only addition and substraction.

Algorithm mySquare (n);

begin
// assume that n >0
T i=n;
y = 0;
while x > 0 do
yi=y+2x—1;

r:=x—1;

od
end
Let Inv(n,z,y) denote the assertion:
r>0Ay>0Ay = (n*—2?).

Claim: Inv(n,x,y) is a loop invariant of the while loop, assuming that n > 0. (The
invariant is sufficient to deduce that, when the while loop terminates, x = 0 and

y=mn’)
Prove the claim.

. Below is the KMP Algorithm.

Algorithm String Match (A, n, B, m);

begin
Ji=1; 1:=1;
Start .= 0;

while Start =0 and 7 < n do
if B[j] = A[i] then
jgi=7+1 i:=1+1
else
J = next[j] + 1;
if j =0 then
ji=1 i:=14+1;
if j =m+ 1 then Start :=1—m
end

Algorithm Compute Next (B, m);
begin
next[l] := —1; next[2] := 0;
for ¢ := 3 to m do
J = next[i — 1] + 1;
while B[i — 1] # B[j] and j > 0 do
J = next[j] + 1;
nextli] := j
end

Explain why its running time is O(n) (assuming next has been pre-computed).

. Below is an algorithm skeleton for depth-first search utilizing a stack; assume that
the input graph is undirected and connected. Modify the algorithm so that it
prints out (the edges of) a DFS tree of the input graph. You should try to make
as few changes as possible, while maintaining the overall structure of the original
algorithm.

Algorithm Simple _Nonrecursive_ DFS (G,v);
begin
push v to Stack;
while Stack is not empty do
pop vertex w from Stack;
if w is unmarked then
mark w;
for all edges (w,x) such that x is unmarked do
push z to Stack
end

. Given as input a connected undirected graph G, a spanning tree 1" of G, and a
vertex v, design an algorithm to determine whether 7" is a valid DFS tree of G
rooted at v. In other words, determine whether 7" can be the output of DFS
under some order of the edges starting with v. Please present your algorithm in an
adequate pseudo code and make assumptions wherever necessary. Explain why the
algorithm is correct and give an analysis of its time complexity. The more efficient
your algorithm is, the more points you get for this problem.

. Let G = (V, E) be a connected weighted undirected graph and 7' be a minimum-
cost spanning tree (MCST) of G. Suppose that the cost of one edge {u,v} in G
is decreased; {u,v} may or may not belong to T. Design an algorithm either to
find a new MCST or to determine that 7" is still an MCST. The more efficient your
algorithm is, the more points you will be credited for this problem. Explain why
your algorithm is correct and analyze its time complexity.

. Below is the algorithm discussed in class for determining the strongly connected
components of a directed graph. The algorithm is based on depth-first search.
During the exploration of the neighbors of a particular node v on which the SCC
procedure is invoked, a neighboring node w may be found to have been visited. The
neighbor w is reached from v either via a cross edge or a back edge. How can these
two cases be distinguished and how does the algorithm handle these two cases?
Please explain.

Algorithm Strongly Connected Components(G,n);
begin
for every vertex v of G do
v.DFS_Number := 0;
v.component = 0;
Current_Component := 0; DFS_N := n;
while v.DF'S_Number = 0 for some v do
SCC(v)

end

procedure SCC(v);
begin

v.DFS_Number := DFS_N,
DFS_N := DFS_N —1;
insert v into Stack;
v.high := v.DFS_Number;
for all edges (v, w) do
if w.DFS_Number =0 then
SCC(w);
v.high := max(v.high,w.high)
else if w.DFS_Number > v.DFS_Number
and w.component = 0 then
v.high := max(v.high, w.DFS_Number)
if v.high = v.DF'S_Number then
Current_Component := Current_Component + 1;
repeat
remove x from the top of Stack;
x.component := Current_C'omponent
until z = v
end

8. Finding a small vertex cover for an arbitrary undirected graph is difficult, but is
much easier for trees; a vertex cover of a graph G is a set of vertices such that every
edge in G is incident to at least one of these vertices. Design an efficient algorithm
to find a minimum-size vertex cover for a given tree. Please present your algorithm
in an adequate pseudo code and make assumptions wherever necessary. The more
efficient your algorithm is, the more points you will be credited for this problem.
Explain why your algorithm is correct and give an analysis of its time complexity.

9. In the proof (discussed in class) of the NP-hardness of the clique problem by re-
duction from the SAT problem, we convert an arbitrary boolean expression in CNF
(input of the SAT problem) to an input graph of the clique problem.

(a) Please illustrate the conversion by drawing the graph that will be obtained
from the following boolean expression:

ZT4+y+z)-(w+z+y+2) (W+y+32).

(b) The original boolean expression is satisfiable. As a demonstration of how the
reduction works, please use the resulting graph to argue that it is indeed the
case.

10. To prove that “P = NP” (which seems unlikely though), it suffices to show that
some NP-complete problem is in P. Why? Please explain.

