
Algorithms [Compiled on May 4, 2006] Spring 2006

Suggested Solutions to Midterm Problems

Problems

1. Given a set of n + 1 numbers out of the first 2n (starting from 1) natural numbers 1, 2,

3, . . ., 2n, prove by induction that there are two numbers in the set, one of which divides

the other.

Solution. The proof is by induction on n.

Base case (n = 1): There is only one subset of 2 (= n + 1) numbers from {1, 2}, which is

the set {1, 2} itself. 1 divides 2.

Inductive step (n = k + 1 > 1): We need to show that any selection (subset) of k + 2

numbers from {1, 2, · · · , 2k, 2k +1, 2k +2} contains two numbers, one of which divides the

other. If the selection includes k + 1 numbers from {1, 2, · · · , 2k}, then by the induction

hypothesis we are done. Otherwise, the selection must contain both 2k + 1 and 2k + 2

and also include a selection S of other k numbers from {1, 2, · · · , 2k}.

Case one (k + 1 ∈ S): k + 1 divides 2k + 2.

Case two (k + 1 6∈ S): If S happens to contain two numbers one of which divides the

other, then we are done. Otherwise, from the induction hypothesis, S must contain a

number that divides k + 1. This is so, because (a) k + 1 does not divide any number in

{1, 2, · · · , 2k} and (b) S ∪ {k + 1} is a selection of k + 1 numbers from {1, 2, · · · , 2k} and

by the induction hypothesis must contain two numbers one of which divides the other.

The number that divides k + 1 also divides 2k + 2. 2

2. Construct a gray code of length ⌈log2 14⌉ (= 4) for 14 objects. Show how the gray code

is constructed systematically from gray codes of smaller lengths.

Solution. Let (c1, c2, . . . , cn)R denote the list cn, cn−1, . . . , c1.

Code of length 1 for 2 objects: 0, 1.

Code of length 2 for 2 objects: 00, 01.

Code of length 2 for 3 objects: 00, 01, 11 (which is open).

Code #1 of length 3 for 3 objects: 000, 001, 011.

Code #2 of length 3 for 3 objects: 100, 101, 111.

Code of length 3 for 6 objects: 000, 001, 011, (100, 101, 111)R .

Code of length 3 for 7 objects: 000, 001, 011, 111, 101, 100, 110 (which is open).

Code #1 of length 4 for 7 objects: 0000, 0001, 0011, 0111, 0101, 0100, 0110.

Code #2 of length 4 for 7 objects: 1000, 1001, 1011, 1111, 1101, 1100, 1110.

Code of length 4 for 14 objects:

0000, 0001, 0011, 0111, 0101, 0100, 0110, (1000, 1001, 1011, 1111, 1101, 1100, 1110)R . 2

1



3. Let T (h) denote the number of nodes in a smallest AVL tree of height h (smallest in the

sense of having the least number of nodes); the height of an empty tree is defined to be 0.

(a) Define a recurrence relation for T (h) (h ≥ 0). Be sure to cover the base cases (or

marginal cases).

Solution.










T (0) = 0
T (1) = 1
T (h) = T (h − 1) + T (h − 2) + 1, h ≥ 2

2

(b) Derive, based on the preceding recurrence relation, a lower bound for T (h), showing

that T (h) grows at least exponentially with h. How do you infer, from the lower

bound, the time complexity of performing a search operation on an AVL tree of size

n?

Solution. A precise solution to T (h) may be derived by establishing the relation

T (h) = F (h + 2) − 1, where F (n) is the n-th Fibonacci number (as defined in

Chapter 3.5 of Manber’s book) for which we already know the closed form; the proof

is in fact quite simple by induction. However, we will prove directly a lower bound

for T (h), namely Ω((3
2)h), which is good enough to show its exponential growth. The

proof is by induction on h, showing that T (h) ≥ 2
3 (3

2)h, for h ≥ 1.

Base case (h = 1 or h = 2): When h = 1, 2
3(3

2 )h ≤ 1 = T (h). When h = 2,
2
3(3

2 )h = 3
2 ≤ 2 = T (h).

Inductive step (h > 2): T (h) = T (h − 1) + T (h − 2) + 1 ≥ 2
3(3

2 )h−1 + 2
3(3

2 )h−2 + 1 ≥

(1 + 2
3)(3

2 )h−2 = (1 + 2
3)(3

2 )−2(3
2)h = 20

27(3
2 )h ≥ 2

3(3
2 )h.

Therefore, for an AVL tree of size n, its height h must be such that 2
3(3

2)h ≤ T (h) ≤ n.

It follows that h ≤ 1
log 1.5 log n + 1, implying h = O(log n). Performing a search

operation on the AVL tree takes time proportional to its height and hence the time

complexity of a search operation is bounded from above by O(log n). 2

4. Show all intermediate and the final AVL trees formed by inserting the numbers 8, 9, 7,

4, 6, 5, 1, 3, and 2 (in this order) into an empty tree. Please use the following ordering

convention: the key of an internal node is larger than that of its left child and smaller

than that of its right child. If a rotation is performed during an insertion, please also show

the tree before the rotation. (15 points)

Solution. (W¡])

2



8
 8


9


8


9
7


Ins 4


Single 


Rotation


Double 


Rotation


Ins 7
Ins 9


8


9
7


4


Ins 6


8


9
7


4


6


8


9
6


4
 7


8


9
6


4
 7


Ins 5


5


8


9


6


4


7
5


8


9


6


4


7
5


Ins 1


1


8


9


6


4


7
5


Ins 3


1


3


8


9


6


4


7
5


Ins 2


1


3


2


Double 


Rotation


8


9


6


4


7
5
2


3
1


2

5. Design an algorithm that solves the following variant of the towers of Hanoi problem

(adapted from Exercise 5.24 of Manber’s book): Like in the original problem, there are

three pegs, each capable of holding up to n disks (for some given n). Initially, the n disks

(of different sizes) are arbitrarily distributed among the three pegs, all in a decreasing

order of sizes (from bottom to top). The goal is to move all the n disks, one at a time

using only the pegs as temporary storage, to one of the three pegs, without violating the

ordering constraint and with as few moves as possible. Please present your algorithm in

an adequate pseudo code and make assumptions wherever necessary. (15 points)

Solution. (Ä�u)

Algorithm main(n,A,B,C)

begin

des := find_the_disk(n,A,B,C);

{S_1,S_2} := {A,B,C} - des;

New_Hanoi_tower(n-1,des,S_1,S_2);

end

3



Algorithm New_Hanoi_tower(n,A,B,C)

begin

src := find_the_disk(n,A,B,C);

des := {B,C} - src;

if src = A then

New_Hanoi_tower(n-1,A,B,C);

else if n = 1 then

move n to A;

else if A.top > n then

move n to A;

New_Hanoi_tower(n-1,A,B,C);

else

New_Hanoi_tower(n-1,des,src,A);

move n to A;

Hanoi_tower(n-1,des,A,src);

end

Algorithm find_the_disk(n,A,B,C)

begin

return which peg contains n;

end

2

6. Design an efficient algorithm that, given an array A of n integers and an integer x,

determine whether A contains two integers whose sum is exactly x. Please present your

algorithm in an adequate pseudo code and make assumptions wherever necessary. Give

an analysis of its time complexity. The more efficient your algorithm is, the more points

you will be credited for this problem.

Solution. The straightforward solution of trying every pair in A would take O(n2) time,

as there are n(n−1)
2 possible pairs. When A is sorted (in increasing order), finding the pair

(if it exists) can be done much more efficiently as follows: If A[1] + A[n] < x, then A[1]

cannot be one of the pair we are looking for, as A[1] + A[j] will be smaller than x for any

j ≤ n. On the other hand, if A[1] + A[n] > x, then A[n] cannot be one of the pair we

are looking for, as A[i] + A[n] will be greater than x for any i ≥ 1. In either case, we can

eliminate one element. So, we sort A first with, for example, the heapsort algorithm and

then invoke the procedure below.

procedure Find Pair (A,n, x);

begin

i := 1;

4



j := n;

while i < j do

if A[i] + A[j] = x then

break;

if A[i] + A[j] < x then

i := i + 1;

else j := j − 1;

if i < j then

print i, j;

else print “no solution”

end

The while loop will be executed at most n− 1 times, hence the running time of the proce-

dure is O(n). Together with the sorting part, the whole algorithm will run in O(n log n)

time. 2

7. Rearrange the following array into a (max) heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 8 3 5 9 14 7 6 1 4 10 13 15 12 11

Show the result after each element is added to the part of array that already satisfies the

heap property.

Solution. (W¡])
2 8 3 5 9 14 7 6 1 4 10 13 15 12 11

2 8 3 5 9 14 12 6 1 4 10 13 15 7 11

2 8 3 5 9 15 12 6 1 4 10 13 14 7 11

2 8 3 5 10 15 12 6 1 4 9 13 14 7 11

2 8 3 6 10 15 12 5 1 4 9 13 14 7 11

2 8 15 6 10 14 12 5 1 4 9 13 3 7 11

2 10 15 6 9 14 12 5 1 4 8 13 3 7 11

15 10 14 6 9 13 12 5 1 4 8 2 3 7 11

2

8. Draw a Huffman tree for a text with the following frequency distribution: A : 14, B : 8,

C : 7, D : 4, E : 18, F : 4, G : 3, and H : 2.

Solution. (W¡])

5



18


E


8


B


4


F


4


D


3


G


2


H


5

7


C


12

14


A


26


8


16


34


60


2

9. Solve one of the following two problems:

(a) Suppose that you are given an algorithm as a black box (you cannot see how it is

designed) that has the following properties: If you input any sequence of real numbers

and an integer k, the algorithm will answer “yes” or “no,” indicating whether there

is a subset of the numbers whose sum is exactly k. Show how to use this black box

to find the subset whose sum is k, if it exists. You should use the black box O(n)

times (where n is the size of the sequence).

Solution. Let Find Subset denote the given algorithm, which takes as input an array

of real numbers, the size of the array (these two together representing the sequence

of real numbers), and an integer.

Algorithm Print_Subset(S,n,k);

begin

if Find_Subset(S,n,k)="no" then

print "No suitable subset"; halt;

print "Below is a suitable subset:";

sum := 0.0;

i := 1;

while sum<k do

this := S[i];

S[i] := 0;

if Find_Subset(S,n,k)="no" then

print this;

sum := sum + this;

S[i] := this;

i := i + 1;

end

6



2

(b) Prove that the sum of the heights of all nodes in a complete binary tree with n nodes

is at most n− 1. (A complete binary tree with n nodes is one that can be compactly

represented by an array A of size n, where the root is stored in A[1] and the left and

the right children of A[i], 1 ≤ i ≤ ⌊n

2 ⌋, are stored respectively in A[2i] and A[2i + 1].

Notice that, in Manber’s book a complete binary tree is referred to as a balanced

binary tree and a full binary tree as a complete binary tree. Manber’s definitions

seem to be less frequently used. Do not let the different names confuse you.)

Solution. Let G(n) denote the sum of the heights of all nodes in a complete binary

tree with n nodes. For a full binary tree (a special case of complete binary trees)

with n = 2h+1 − 1 nodes where h is the height of the tree, we already know that

G(n) = 2h+1 − (h + 2) = n − (h + 1) ≤ n − 1. With this as a basis, we prove the

general case of arbitrary complete binary trees by induction on the number n (≥ 1)

of nodes.

Base case (n = 1 or n = 2): When n = 1, the tree is the smallest full binary tree

with one single node whose height is 0. So, G(n) = 0 ≤ 1 − 1 = n − 1. When n = 2,

the tree has one additional node as the left child of the root. The height of the root

is 1, while that of its left child is 0. So, G(n) = 1 ≤ 2 − 1 = n − 1.

Inductive step (n > 2): If n happens to be equal to 2h+1 − 1 for some h ≥ 1, i.e.,

the tree is full, then we are done; note that this covers the case of n = 3 = 21+1 − 1.

Otherwise, suppose 2h+1 − 1 < n < 2h+2 − 1 (h ≥ 1), i.e., the tree is a “proper”

complete binary tree with height h + 1 ≥ 2. We observe that at least one of the

two subtrees of the root is full, while the other is complete (possibly full). There are

three cases to consider:

Case 1: The left subtree is full with n1 nodes and the right one is complete but not

full with n2 nodes (such that n1 + n2 + 1 = n). In this case, both subtrees much be

of height h and n1 = 2h+1 − 1. From the special case of full binary trees and the

induction hypothesis, G(n1) = 2h+1 − (h + 2) = n1 − (h + 1) and G(n2) ≤ n2 − 1.

G(n) = G(n1)+G(n2)+(h+1) ≤ (n1−(h+1))+(n2−1)+(h+1) = (n1+n2+1)−2 ≤

n − 1.

Case 2: The left subtree is full with n1 nodes and the right one is also full with n2

nodes. In this case, the left subtree much be of height h and n1 = 2h+1−1, while the

right subtree much be of height h − 1 and n2 = 2h − 1. From the special case of full

binary trees, G(n1) = 2h+1−(h+2) = n1−(h+1) and G(n2) = 2h−(h+1) = n2−h.

G(n) = G(n1) + G(n2) + (h + 1) ≤ (n1 − (h + 1)) + (n2 − h) + (h + 1) = (n1 + n2 +

1) − (h + 1) ≤ n − 1.

Case 3: The left subtree is complete but not full with n1 nodes and the right one is

full with n2 nodes. In this case, the left subtree much be of height h, while the right

subtree much be of height h−1 and n2 = 2h −1. From the induction hypothesis and

the special case of full binary trees, G(n1) ≤ n1−1 and G(n2) = 2h−(h+1) = n2−h.

7



G(n) = G(n1)+G(n2)+(h+1) ≤ (n1−1)+(n2−h)+(h+1) = (n1+n2+1)−1 = n−1.

2

8


