Algorithms [June 21, 2016] Spring 2016

Final

Note

This is a closed-book exam. KEach problem accounts for 10 points, unless otherwise
marked.

Problems

1. Below is the Mergesort algorithm in pseudocode:

Algorithm Mergesort (X, n);
begin M _Sort(1,n) end

procedure M _Sort (Left, Right);
begin
if Right — Left =1 then
if X[Left] > X[Right| then swap(X|[Left|, X[Right))
else if Left # Right then
Middle := [1(Left + Right)];
M _Sort(Left, Middle — 1);
M _Sort(Middle, Right);
// the merge part
1:= Left; j:= Middle; k :=0;
while (i < Middle — 1) and (j < Right) do
k:=k+1;
if X[i] < X[j] then
TEMP[k] := X[i]; i
else TEMPlk] .= X[j]; j:=Jj+1;
if 7 > Right then
for t := 0 to Middle —1—i do
X[Right —t] :== X[Middle — 1 — {]
fort:=0tok—1do
X|[Left +t] :== TEMP][{]
end

Given the array below as input, what are the contents of array TEMP after the
merge part is executed for the first time and what are the contents of TEMP when
the algorithm terminates? Assume that each entry of TEMP has been initialized
to 0 when the algorithm starts.

1 2 3 4 5 6 7 8 9 10 11 12
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2. Construct a Huffman code tree for a text composed from seven characters A, B, C,
D, E, F, and G with frquencies 12, 5, 3, 6, 16, 4, and 8 respectively.

3. Below is an algorithm skeleton for depth-first search utilizing a stack; assume that
the input graph is undirected and connected. Modify the algorithm so that it
prints out (the edges of) a DFS tree of the input graph. You should try to make
as few changes as possible, while maintaining the overall structure of the original
algorithm.

Algorithm Simple Nonrecursive DFS (G, v);
begin
push v to Stack;
while Stack is not empty do
pop vertex w from Stack;
if w is unmarked then
mark w;
for all edges (w, x) such that x is unmarked do
push x to Stack
end

4. Below is a variant of Prim’s algorithm for obtaining a minimum-cost spanning tree
of a weighted undirected graph. Please give an analysis of its time complexity. Be
explicit about the assumptions you make when doing the analysis.

Algorithm Another MST(G);
begin
initially T" is the empty set;
for all vertices w do
w.mark = false; w.cost := o0o;
x.mark := true; /* x is an arbitrary vertex */
for all edges (z, z) do
z.edge = (x,z); z.cost := cost(x, z);
while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost = co then
print “G is not connected”; halt
else
w.mark = true;
add w.edge to T
for all edges (w, z) do
if not z.mark then
if cost(w, z) < z.cost then
z.edge = (w, 2);
z.cost == cost(w, z)
end



5. Let G = (V, E') be a connected weighted undirected graph and 7" be a minimum-
cost spanning tree (MCST) of G. Suppose that the cost of one edge {u,v} in G
is decreased; {u,v} may or may not belong to 7. Design an algorithm either to
find a new MCST or to determine that T is still an MCST. The more efficient your
algorithm is, the more points you will be credited for this problem. Explain why
your algorithm is correct and analyze its time complexity.

6. Finding a small vertex cover for an arbitrary undirected graph is difficult, but is
much easier for trees; a vertex cover of a graph G is a set of vertices such that every
edge in G is incident to at least one of these vertices. Design an efficient algorithm
to find a minimum-size vertex cover for a given tree. Please present your algorithm
in an adequate pseudo code and make assumptions wherever necessary. The more
efficient your algorithm is, the more points you will be credited for this problem.
Explain why your algorithm is correct and give an analysis of its time complexity.

7. Below is a solution to the single-source shortest path problem using the dynamic
programming approach, which we have discussed in class:

Denote by D'(u) the length of a shortest path from v (the source) to u containing
at most | edges; particularly, D" !(u) is the length of a shortest path from v to u
(with no restrictions).

length(v,u) if (v,u) € F
D'(u)=¢ 0 if u=uv
00 otherwise

D'(u) = min{D'"(u), ( mi)nE{Dl_l(u’) + length(u/,u)}},
u/u)e

2<]<n-1

Please explain why the solution allows edges with a negative weight (as long as there
is no cycle with a negative weight). How is this different from Dijkstra’s algorithm?
Please explain.

8. In the proof (discussed in class) of the NP-hardness of the clique problem by re-
duction from the SAT problem, we convert an arbitrary boolean expression in CNF
(input of the SAT problem) to an input graph of the clique problem.

(a) Please illustrate the conversion by drawing the graph that will be obtained
from the following boolean expression:

(x+2)- W+z+y+2) - T+y+2) - (w+y+732).

(b) The original boolean expression is satisfiable. As a demonstration of how the
reduction works, please use the resulting graph to argue that it is indeed the
case.



9. In the proof (discussed in class) of the NP-hardness of the 3SAT problem by re-
duction from the SAT problem, we convert an arbitrary boolean expression in CNF
(input of the SAT problem) to a boolean expression in 3CNF (where each clause
has exactly three literals).

(a) Please illustrate the conversion by giving the boolean expression that will be
obtained from the following boolean expression:

- (U+T4y) @+w+T+y+2) (W+z+y+z).

(b) The original boolean expression is satisfiable. As a demonstration of why the
reduction is correct, please use the resulting boolean expression to show that
it is indeed the case.

10. Solve one of the following two problems. (Note: if you try to solve both problems,
[ will randomly pick one of them to grade.)

(a) The subgraph isomorphism problem is as follows.

Given two graphs G7 = (V4, E1) and Gy = (V4, Es), does G have a
subgraph that is isomorphic to G537 (Two graphs are isomorphic if
there exists a one-one correspondence between the two sets of vertices
of the two graphs that preserves adjacency, i.e., if there is an edge
between two vertices of the first graph, then there is also an edge
between the two corresponding vertices in the second graph, and vice
versa.)

Prove that the subgraph isomorphism problem is NP-complete.
(b) The traveling salesman problem is as follows.

Given a weighted complete graph G = (V, E) (representing a set of
cities and the distances between all pairs of cities) and a number D,
does there exist a circuit (traveling-salesman tour) that includes all
the vertices (cities) and has a total length < D?

Prove that the traveling salesman problem is NP-complete.

Appendix

e The Hamiltonian cycle problem: given an undirected graph G, does G have a
Hamiltonian cycle? (A Hamiltonian cycle in a graph is a cycle that contains each
vertex, except the starting vertex of the cycle, exactly once.)

The Hamiltonian cycle problem is NP-complete.



