
Algorithms [June 21, 2010] Spring 2010

Final

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise

marked.

Problems

1. The Partition procedure for the Quicksort algorithm discussed in class is as follows,

where Middle is a global variable.

Partition (X,Left ,Right);

begin

pivot := X[left ];

L := Left ; R := Right ;

while L < R do

while X[L] ≤ pivot and L ≤ Right do L := L + 1;

while X[R] > pivot and R ≥ Left do R := R− 1;

if L < R then swap(X[L], X[R]);

Middle := R;

swap(X[Left ], X[Middle])

end

Find an adequate loop invariant for the main while loop, which is sufficient to show

that after the execution of the last two assignment statements the array is properly

partitioned by X[Middle]. Please express the loop invariant as precisely as possible,

using mathematical notation. Explain why the invariant is sufficient.

2. Compute the next table as in the KMP algorithm for string B[1..11] = bbaabbbaaba.

Please show how next [8] and next [11] are computed from using preceding entries in

the table.

3. Give a binary de Bruijn sequence of 24 bits, which is a cyclic sequence of 24 bits

a1a2 · · · a24 such that each binary sequence of size 4 appears somewhere in the

sequence. Explain how you can systematically produce the sequence.
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4. Design an algorithm for determining whether a given acyclic directed graph G =

(V, E) contains a directed Hamiltonian path. (Note: a directed Hamiltonian path in

a directed graph is a simple directed path that includes all vertices of the graph. An

acyclic directed graph is one without directed cycles.) Please present your algorithm

in an adequate pseudo code and make assumptions wherever necessary. The more

efficient your algorithm is, the more points you will be credited for this problem.

Explain why your algorithm is correct and give an analysis of its time complexity.

5. What is wrong with the following algorithm for computing the minimum-cost span-

ning tree of a given weighted undirected graph (assumed to be connected)?

If the input is just a single-node graph, return the single node. Otherwise,

divide the graph into two subgraphs, recursively compute their minimum-

cost spanning trees, and then connect the two spanning trees with an edge

between the two subgraphs that has the minimum weight.

6. Below is an algorithm discussed in class for determining the strongly connected

components of a directed graph. Is the algorithm still correct if we replace the line

“v.high := max(v.high, w.DFS Number)” by “v.high := max(v.high, w.high)”?

Why? Please explain.

Algorithm Strongly Connected Components(G, n);

begin

for every vertex v of G do

v.DFS Number := 0;

v.component := 0;

Current Component := 0; DFS N := n;

while v.DFS Number = 0 for some v do

SCC(v)

end

procedure SCC(v);

begin

v.DFS Number := DFS N ;

DFS N := DFS N − 1;

insert v into Stack;

v.high := v.DFS Number;

for all edges (v, w) do

if w.DFS Number = 0 then
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SCC(w);

v.high := max(v.high, w.high)

else if w.DFS Number > v.DFS Number

and w.component = 0 then

v.high := max(v.high, w.DFS Number)

if v.high = v.DFS Number then

Current Component := Current Component + 1;

repeat

remove x from the top of Stack;

x.component := Current Component

until x = v

end

7. Finding a small vertex cover for an arbitrary undirected graph is difficult, but is

much easier for trees; a vertex cover of a graph G is a set of vertices such that every

edge in G is incident to at least one of these vertices. Design an efficient algorithm

to find a minimum-size vertex cover for a given tree. Please present your algorithm

in an adequate pseudo code and make assumptions wherever necessary. The more

efficient your algorithm is, the more points you will be credited for this problem.

Explain why your algorithm is correct and give an analysis of its time complexity.

8. Below is a solution to the single-source shortest path problem using the dynamic

programming approach, which we have discussed in class:

Denote by Dl(u) the length of a shortest path from v (the source) to u containing

at most l edges; particularly, Dn−1(u) is the length of a shortest path from v to u

(with no restrictions).

D1(u) =


length(v, u) if (v, u) ∈ E
0 if u = v
∞ otherwise

Dl(u) = min{Dl−1(u), min
(u′,u)∈E

{Dl−1(u′) + length(u′, u)}},

2 ≤ l ≤ n− 1

Please explain why the solution allows edges with a negative weight (as long as there

is no cycle with a negative weight). How is this different from Dijkstra’s algorithm?

Please explain.
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9. In the proof (discussed in class) of the NP-hardness of the clique problem by re-

duction from the SAT problem, we convert an arbitrary boolean expression in CNF

(input of the SAT problem) to an input graph of the clique problem. Please il-

lustrate the conversion by drawing the graph for the following boolean expression:

(w + z) · (w + x + y + z) · (w + y + z). Explain how you have drawn the graph

systematically.

10. Solve one of the following two problems. (Note: if you try to solve both problems,

I will randomly pick one of them to grade.)

(a) The knapsack problem is as follows.

Given a set X, where each element x ∈ X has an associated size s(x)

and value v(x), and two other numbers S and V , is there a subset

B ⊆ X whose total size is ≤ S and whose total value is ≥ V ?

Prove that the knapsack problem is NP-complete.

(b) The subgraph isomorphism problem is as follows.

Given two graphs G = (V1, E1) and H = (V2, E2), does G have a

subgraph that is isomorphic to H? (Two graphs are isomorphic if

there exists a one-one correspondence between the two sets of vertices

of the two graphs that preserves adjacency, i.e., if there is an edge

between two vertices of the first graph, then there is also an edge

between the two corresponding vertices in the second graph, and vice

versa.)

Prove that the subgraph isomorphism problem is NP-complete.

Appendix

• The partition problem: given a set X where each element x ∈ X has an associated

size s(x), is it possible to partition the set into two subsets with exactly the same

total size?

The partition problem is NP-complete.

• The Hamiltonian cycle problem: given an undirected graph G, does G have a

Hamiltonian cycle? (A Hamiltonian cycle in a graph is a cycle that contains each

vertex, except the starting vertex of the cycle, exactly once.)

The Hamiltonian cycle problem is NP-complete.
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