
Algorithms [June 18, 2012] Spring 2012

Final

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. A Hamiltonian path in a directed graph is a simple directed path that contains each
vertex exactly once. Given an undirected complete graph, if we arbitrarily orient
every edge in the graph (turning every undirected edge {u, v} into either (u, v) or
(v, u)), then the resulting directed graph must contain a Hamiltonian path. (Note:
this problem is a reformulation of a problem from the midterm exam.)

2. Consider the next table as in the KMP algorithm for string B[1..9] = abaababaa.

1 2 3 4 5 6 7 8 9
a b a a b a b a a
−1 0 0 1 1 2 3 2 3

Suppose that, during an execution of the KMP algorithm, B[6] (which is an a) is
being compared with a letter in A, say A[i], which is not an a and so the matching
fails. The algorithm will next try to compare B[next [6] + 1], i.e., B[3] which is also
an a, with A[i]. The matching is bound to fail for the same reason. This comparison
could have been avoided, as we know from B itself that B[6] equals B[3] and, if
B[6] does not match A[i], then B[3] certainly will not either. B[5], B[8], and B[9]
all have the same problem, but B[7] does not. Please adapt the computation of the
next table, reproduced below, so that such wasted comparisons can be avoided.

Algorithm Compute Next (B, m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

3. Design an algorithm that, given a set of integers S = {x1, x2, . . . , xn}, finds a
nonempty subset R ⊆ S, such that∑

xi∈R

xi ≡ 0 (mod n).

1

(Note: such a subset R must exist.) Please present your algorithm in an adequate
pseudo code and make assumptions wherever necessary. Explain why the algorithm
is correct and give an analysis of its time complexity. The more efficient your
algorithm is, the more points you get for this problem.

4. Given as input a connected undirected graph G, a spanning tree T of G, and a
vertex v, design an algorithm to determine whether T is a valid DFS tree of G
rooted at v. In other words, determine whether T can be the output of DFS
under some order of the edges starting with v. Please present your algorithm in an
adequate pseudo code and make assumptions wherever necessary. Explain why the
algorithm is correct and give an analysis of its time complexity. The more efficient
your algorithm is, the more points you get for this problem.

5. Consider Dijkstra’s algorithm for single-source shortest paths as shown below. You
may find in the literature two bounds, namely O(|V |2) and O((|E| + |V |) log |V |),
for its time complexity. Why is this so? What does this difference imply?

Algorithm Single Source Shortest Paths(G, v);
begin

for all vertices w do
w.mark := false;
w.SP := ∞;

v.SP := 0;
while there exists an unmarked vertex do

let w be an unmarked vertex s.t. w.SP is minimal;
w.mark := true;
for all edges (w, z) such that z is unmarked do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z)

end

6. What is wrong with the following algorithm for computing the minimum-cost span-
ning tree of a given weighted undirected graph (assumed to be connected)?

If the input is just a single-node graph, return the single node. Otherwise,
divide the graph into two subgraphs, recursively compute their minimum-
cost spanning trees, and then connect the two spanning trees with an edge
between the two subgraphs that has the minimum weight.

7. Let G = (V, E) be a directed graph, and let T be a DFS tree of G. Prove that the
intersection of the edges of T with the edges of any strongly connected component
of G form a subtree (rather than two or more separate subtrees) of T .

8. Below is an algorithm discussed in class for determining the strongly connected
components of a directed graph. Is the algorithm still correct if we replace the line
“v.high := max(v.high, w.DFS Number)” by “v.high := max(v.high, w.high)”?
Why? Please explain.

2

Algorithm Strongly Connected Components(G, n);
begin

for every vertex v of G do
v.DFS Number := 0;
v.component := 0;

Current Component := 0; DFS N := n;
while v.DFS Number = 0 for some v do

SCC(v)
end

procedure SCC(v);
begin

v.DFS Number := DFS N ;
DFS N := DFS N − 1;
insert v into Stack;
v.high := v.DFS Number;
for all edges (v, w) do

if w.DFS Number = 0 then
SCC(w);
v.high := max(v.high, w.high)

else if w.DFS Number > v.DFS Number
and w.component = 0 then

v.high := max(v.high, w.DFS Number)
if v.high = v.DFS Number then

Current Component := Current Component + 1;
repeat

remove x from the top of Stack;
x.component := Current Component

until x = v
end

9. To prove that “P = NP” (which is unlikely though), it suffices to show that some
NP-complete problem is in P. Why? Please explain.

10. A variant of the directed Hamiltonian path problem is as follows.

Given a directed graph G(V, E) and u, v ∈ V , does G contain a Hamil-
tonian path from u to v? (A Hamiltonian path in a directed graph is a
simple directed path that contains each vertex exactly once.)

Prove that this variant of the directed Hamiltonian path problem is NP-complete.
(Hint: one proof of NP-hardness is by reduction from the directed Hamiltonian
cycle problem. Given the input graph G(V, E) of the directed Hamiltonian cycle
problem, we obtain the input graph G′(V ′, E ′) of the directed Hamiltonian path
problem as follows: Add to V two new vertices u and v to get V ′. To get E ′, keep
all edges in E, add a new edge (u, v′) for every vertex v′ in V , and for every edge
(u′, v′) in E, add another new edge (u′, v) if it has not been added yet.)

3

Appendix

• The KMP Algorithm:

Algorithm String Match (A, n,B,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i + 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i + 1;
if j = m + 1 then Start := i−m

end

• The directed Hamiltonian cycle problem: given a directed graph G, does G contain
a Hamiltonian cycle? (A Hamiltonian cycle in a directed graph is a directed cycle
that contains each vertex, except the starting vertex of the cycle, exactly once.)

The directed Hamiltonian cycle problem is NP-complete.

4

