
Algorithms [April 20, 2006] Spring 2006

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise

marked.

Problems

1. Given a set of n + 1 numbers out of the first 2n (starting from 1) natural numbers

1, 2, 3, . . ., 2n, prove by induction that there are two numbers in the set, one of

which divides the other.

2. Construct a gray code of length dlog2 14e (= 4) for 14 objects. Show how the gray

code is constructed systematically from gray codes of smaller lengths.

3. Let T (h) denote the number of nodes in a smallest AVL tree of height h (smallest

in the sense of having the least number of nodes); the height of an empty tree is

defined to be 0.

(a) Define a recurrence relation for T (h) (h ≥ 0). Be sure to cover the base cases

(or marginal cases).

(b) Derive, based on the preceding recurrence relation, a lower bound for T (h),

showing that T (h) grows at least exponentially with h. How do you infer, from

the lower bound, the time complexity of performing a search operation on an

AVL tree of size n?

4. Show all intermediate and the final AVL trees formed by inserting the numbers

8, 9, 7, 4, 6, 5, 1, 3, and 2 (in this order) into an empty tree. Please use the

following ordering convention: the key of an internal node is larger than that of its

left child and smaller than that of its right child. If a rotation is performed during

an insertion, please also show the tree before the rotation. (15 points)

5. Design an algorithm that solves the following variant of the towers of Hanoi problem

(adapted from Exercise 5.24 of Manber’s book): Like in the original problem, there

are three pegs, each capable of holding up to n disks (for some given n). Initially,

the n disks (of different sizes) are arbitrarily distributed among the three pegs, all

1



in a decreasing order of sizes (from bottom to top). The goal is to move all the n

disks, one at a time using only the pegs as temporary storage, to one of the three

pegs, without violating the ordering constraint and with as few moves as possible.

Please present your algorithm in an adequate pseudo code and make assumptions

wherever necessary. (15 points)

6. Design an efficient algorithm that, given an array A of n integers and an integer

x, determine whether A contains two integers whose sum is exactly x. Please

present your algorithm in an adequate pseudo code and make assumptions wherever

necessary. Give an analysis of its time complexity. The more efficient your algorithm

is, the more points you will be credited for this problem.

7. Rearrange the following array into a (max) heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 8 3 5 9 14 7 6 1 4 10 13 15 12 11

Show the result after each element is added to the part of array that already satisfies

the heap property.

8. Draw a Huffman tree for a text with the following frequency distribution: A : 14,

B : 8, C : 7, D : 4, E : 18, F : 4, G : 3, and H : 2.

9. Solve one of the following two problems:

(a) Suppose that you are given an algorithm as a black box (you cannot see how

it is designed) that has the following properties: If you input any sequence

of real numbers and an integer k, the algorithm will answer “yes” or “no,”

indicating whether there is a subset of the numbers whose sum is exactly k.

Show how to use this black box to find the subset whose sum is k, if it exists.

You should use the black box O(n) times (where n is the size of the sequence).

(b) Prove that the sum of the heights of all nodes in a complete binary tree with

n nodes is at most n − 1. (A complete binary tree with n nodes is one that

can be compactly represented by an array A of size n, where the root is stored

in A[1] and the left and the right children of A[i], 1 ≤ i ≤ bn
2
c, are stored

respectively in A[2i] and A[2i + 1]. Notice that, in Manber’s book a complete

binary tree is referred to as a balanced binary tree and a full binary tree as

a complete binary tree. Manber’s definitions seem to be less frequently used.

Do not let the different names confuse you.)

2


