
Algorithms [Compiled on May 7, 2014] Spring 2014

Suggested Solutions to Midterm Problems

1. Find an expression for the sum of the i-th row of the following triangle, which is called
the Pascal triangle, and prove by induction the correctness of your claim. The sides of
the triangle are 1s, and each other entry is the sum of the two entries immediately above
it.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

Solution. To be completed. 2

2. In the so-called implicit representation of a binary tree, the tree nodes are stored in an
array, say A, such that

(a) the root is stored in A[1] and

(b) the left child of (the node stored in) A[i] is stored in A[2i] and the right child in
A[2i + 1]. (Note: a nonexistent child may be indicated by a special mark/value in
the corresponding cell for storing the child.)

Prove by induction that, for complete binary trees, the implicit representation is compact
in the sense that, if we label the tree nodes from top to bottom and left to right with the
numbers 1 through n (where n is the number of nodes in the tree), then the node labeled
i is stored in A[i] for 1 ≤ i ≤ n.

Solution. We first observe that a complete binary tree of n nodes is obtained from another
of n− 1 nodes as follows. If node n− 1 (according to the labeling from top to bottom and
left to right) is the left child of a node, node n is simply added as the right child of the
same node. If node n− 1 is the right child of a node i (i < n− 1), then node n is added
as the left child of node i + 1.

The proof of compactness is by induction on n.

Base case (n = 1, 2): when n = 1, the only element is the root which is labeled 1 and,
according to the implicit representation, is stored in A[1]. When n = 2, the node labeled
1 is stored in A[1] as in the case of n = 1. The node labeled 2 is the left child of node 1,
i.e., A[1], and according to the implicit representation, is stored in A[2× 1], i.e., A[2].

Inductive step (n > 2): from the induction hypothesis and the observation stated in the
beginning, the part of nodes 1 through n− 1 are stored in A[1..n− 1] in the right order.
We need to show that the last node, labeled n, will indeed be stored in A[n] according to
the implicit representation. There are two cases:

When n − 1 is even (n − 1 ≥ 2), node n − 1, stored in A[n − 1] (from the induction
hypothesis), is the left child of A[n−1

2 ] (according to the implicit representation), i.e.,
node n−1

2 (from the induction hypothesis). Hence, node n should be the right child of
node n−1

2 (or A[n−1
2 ]) and stored in A[2× n−1

2 + 1], i.e., A[n].
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When n − 1 is odd (n − 1 ≥ 3), node n − 1, stored in A[n − 1], is the right child of
A[n−1−1

2 ], i.e., node n−1−1
2 . Hence, node n should be the left child of node n−1−1

2 + 1 (or
A[n−1−1

2 + 1]) and stored in A[2(n−1−1
2 + 1)], i.e., A[n].

2

3. (15 points) Let G(h) denote the least possible number of nodes contained in an AVL tree
of height h. Let us assume that the empty tree has height −1 and a single-node tree has
height 0.

(a) (5 points) Please give a recurrence relation that characterizes (fully defines) G.

Solution. The recurrence relation can be defined as follows:
G(−1) = 0
G(0) = 1
G(h) = G(h− 1) + G(h− 2) + 1, h ≥ 1

2

(b) (10 points) Based on the recurrence relation, prove that the height of an AVL tree
with n nodes is O(log n).

Solution. A precise solution to G(h) may be derived by establishing the relation
G(h) = F (h + 3) − 1, where F (n) is the n-th Fibonacci number (as defined in
Chapter 3.5 of Manber’s book) for which we already know the closed form; the proof
is in fact quite simple by induction. However, we will prove directly a lower bound
for G(h), namely Ω((32)h), which is good enough to show its exponential growth. The
proof is by induction on h, showing that G(h) ≥ 2

3(32)h, for h ≥ 0.

Base case (h = 0 or h = 1): When h = 0, 2
3(32)0 = 2

3 ≤ 1 = G(0). When h = 1,
2
3(32)1 = 1 ≤ 2 = G(1).

Inductive step (h > 1): G(h) = G(h − 1) + G(h − 2) + 1, which from the induction
hypothesis ≥ 2

3(32)h−1 + 2
3(32)h−2 + 1 ≥ (1 + 2

3)(32)h−2 = (1 + 2
3)(32)−2(32)h = 20

27(32)h ≥
2
3(32)h.

Therefore, for an AVL tree of size n, its height h must be such that 2
3(32)h ≤ G(h) ≤ n.

It follows that h ≤ 1
log 1.5 log n + 1 (base 2 logarithm), implying h = O(log n). 2

4. (15 points) Consider the problem of merging two skylines, which is a useful building block
for computing the skyline of a number of buildings. A skyline is an alternating sequence
of x coordinates and y coordinates (heights), ending with an x coordinate (as discussed
in class).

(a) What is the resulting skyline from merging these two skylines:
(1,3,3,6,6,2,8,7,10,3,14) and (2,4,6,2,8,5,11,3,12)?

Solution. (1,3,2,4,3,6,6,2,8,7,10,5,11,3,14) 2

(b) To obtain a systematic procedure for merging two skylines, one may focus on deter-
mining the first two coordinate values to be output and reducing (by two) the length
of one of the input skylines. Suppose the two input skylines are (a1, a2, · · · , a2m+1)
and (b1, b2, · · · , b2n+1). How can the first two coordinate values in the output be
determined?

Solution. There are three cases:
a1 < b1: output (a1, a2). a1 > b1: output (b1, b2). a1 = b1: output (a1, a2) if
a2 ≥ b2; output (b1, b2), otherwise.
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(c) Following the thought in the previous subproblem, assume that the first two coordi-
nate values that should be output are a1 and a2. We are now looking at two skylines
(a3, a4, · · · , a2m+1) and (b1, b2, · · · , b2n+1), the first being shorter (by two) than in the
original input. How can the next two coordinate values in the output be determined?

Solution. To be completed. 2

5. Consider the Knapsack Problem: Given a set S of n items, where the i-th item has an
integer size S[i], and an integer K, find a subset of the items whose sizes sum to exactly
K or determine that no such subset exists.

We have discussed in class two approaches to implementing a solution that we designed
by induction: one uses dynamic programming (see the Appendix), while the other uses
recursive function calls.

Please present the recursive approach in suitable pseudocode.

Solution. Below is a recursive version of the algorithm for determining whether a solution
to the Knapsack Problem exists, where we have ignored the tag values for recording
the subset of items that constitute the solution. The algorithm should be invoked with
Knapsack(S,K, n).

Algorithm Knapsack(S, k,m);
begin

if k = 0 then return true;
if m = 0 then return false;
if Knapsack(S, k,m− 1) then return true
else if k − S[m] ≥ 0 then return Knapsack(S, k − S[m],m− 1)

else return false;
end

2

6. Show all intermediate and the final AVL trees formed by inserting the numbers 7, 6, 3, 1,
4, 5, and 2 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution. To be completed. 2

7. The input is a set S with n real numbers. Design an O(n) time algorithm to find a number
that is not in the set. Prove that Ω(n) is a lower bound on the number of steps required
to solve this problem.

Solution. When there is just one number (i.e., n = 1) in S, it is trivial to find a real
number different from the number in S, e.g., by adding one to or subtracting one from
the existing number. When there are exactly two numbers, we simply take their average
which will be different from both numbers, since by the definition of a set, all numbers in
S are distinct. When there are more than two numbers, we proceed as follows.

Store the first two numbers as a pair and read the remaining numbers one by one. When
the next number read falls between the pair, we replace the smaller of the pair by the
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number just read. At the end we will have a pair of real numbers and none of the numbers
in S falls between the pair. We take the average of the pair which will be different any
number in S.

We next argue for the lower bound Ω(n). This is quite straightforward, since every number
in S must be read and there are n numbers. Any algorithm that skips a number may
return a wrong result, as the result may happen to be equal to the number that is skipped.
2

8. Consider rearranging the following array into a max heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 3 5 2 1 8 14 6 4 11 10 12 13 15 9

Please show the result (i.e., the contents of the array) after a new element is added to the
current collection of heaps (at the bottom) until the entire array has become a heap.

Solution. To be completed. 2

9. Consider the following algorithm that, given a sorted sequence of distinct integers a1, a2, · · · , an
(stored in an array A), determines whether there exists an index i such that ai = i.

Algorithm Special Binary Search (A,n);
begin

Position := Special F ind(1, n);
end

function Special Find (Left,Right) : integer;
begin

if Left = Right then
if A[Left] = Left then Special F ind := Left
else Special F ind := 0

else

Middle := dLeft+Right
2 e;

if A[Middle] < Middle then
Special F ind := Special F ind(Middle + 1, Right)

else
Special F ind := Special F ind(Left,Middle)

end

Draw a decision tree of the algorithm for the case of input size six, i.e., n = 6.

Solution. The given algorithm turns out to be erroneous (as was noticed by some of you
during the exam). According to the algorithm, a decision tree for the case of n = 6 is as
follows.
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Special Find(1,6)
A[4]:4

Special Find(1,4)
A[3]:3

Special Find(1,3)
A[2]:2

Special Find(1,2)
A[2]:2

. . .. . .

Special Find(3,3)
A[3]:3

03

Special Find(4,4)
A[4]:4

04

= 6=

Special Find(5,6)
A[6]:6

Special Find(5,6)
A[6]:6

loop!

Special Find(7,6)
A[7]:7

error!

< ≥

2

Appendix

• The solution of the recurrence relation T (n) = aT (n/b) + cnk, where a and b are integer
constants, a ≥ 1, b ≥ 2, and c and k are positive constants, is as follows.

T (n) =


O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

• Below are several basic generating functions.

generating func. power series generated sequence

1
1−z 1 + z + z2 + · · ·+ zn + · · · 1, 1, 1, · · · , 1, · · ·
c

1−az c + caz + ca2z2 + · · ·+ canzn + · · · c, ca, ca2, · · · , can, · · ·
1

(1−z)2
1 + 2z + 3z2 + · · ·+ nzn−1 + · · · 1, 2, 3, · · · , n, · · ·

z
(1−z)2

z + 2z2 + 3z3 + · · ·+ nzn + · · · 0, 1, 2, 3, · · · , n, · · ·

• Below is a non-recursive algorithm for determining whether a solution to the Knapsack
Problem exists.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end
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