
Algorithms [April 21, 2015] Spring 2015

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Consider the geometric series: 1, 2, 4, 8, 16, . . .. Prove by induction that any
positive integer can be written as a sum of distinct numbers from this series.

2. Prove by induction that the sum of the heights of all nodes in a complete binary
tree with n nodes is at most n − 1. You may assume it is known that the sum of
the heights of all nodes in a full binary tree of height h is 2h+1 − h − 2. (Note: a
single-node tree has height 0.)

3. In the so-called implicit representation of a binary tree, the tree nodes are stored
in an array, say A, such that

(a) the root is stored in A[1] and

(b) the left child of (the node stored in) A[i] is stored in A[2i] and the right child in
A[2i+1]. (Note: a nonexistent child may be indicated by a special mark/value
in the corresponding cell for storing the child.)

Prove by induction that, for complete binary trees, the implicit representation is
compact in the sense that, if we label the tree nodes from top to bottom and left to
right with the numbers 1 through n (where n is the number of nodes in the tree),
then the node labeled i is stored in A[i] for 1 ≤ i ≤ n.

4. (15 points) Let G(h) denote the least possible number of nodes contained in an
AVL tree of height h. Let us assume that the empty tree has height −1 and a
single-node tree has height 0.

(a) (5 points) Please give a recurrence relation that characterizes (fully defines)
G.

(b) (10 points) Based on the recurrence relation, prove that the height of an AVL
tree with n nodes is O(log n).

5. (15 points) Consider the Knapsack Problem: Given a set S of n items, where the
i-th item has an integer size S[i], and an integer K, find a subset of the items whose
sizes sum to exactly K or determine that no such subset exists.

Below is a recursive version of the algorithm for determining whether a solution to
the Knapsack Problem exists, where we have ignored the tag values for recording
the subset of items that constitute the solution. The algorithm should be invoked
with Knapsack(n,K).

1



Algorithm Knapsack(m, k);
begin

if k = 0 then return true;
if m = 0 then return false;
if Knapsack(m− 1, k) then return true
else if k − S[m] ≥ 0 then return Knapsack(m− 1, k − S[m])

else return false;
end

(a) (5 points) Given an input, Knapsack(m, k) may be invoked with the same
combination of m and k at different points of execution. Why? Please give an
example.

(b) (10 points) How will you propose to avoid duplicate invocations? Please revise
the code to incorporate your proposal. (Hint: use an array to memorize the
result of an invocation.)

6. Show all intermediate and the final AVL trees formed by inserting the numbers
6, 1, 2, 5, 4, and 3 (in this order) into an empty tree. Please use the following
ordering convention: the key of an internal node is larger than that of its left child
and smaller than that of its right child. If re-balancing operations are performed,
please also show the tree before re-balancing and indicate what type of rotation is
used in the re-balancing.

7. Apply the Quicksort algorithm to the following array. Show the contents of the
array after each partition operation. If you use a different partition algorithm
(from the one discussed in class), please describe it.

1 2 3 4 5 6 7 8 9 10 11 12

9 10 4 6 11 7 8 2 1 12 3 5

8. Please present in suitable pseudocode the algorithm (discussed in class) for rear-
ranging an array A[1..n] of n integers into a max heap using the bottom-up approach.

9. Below is a variant of the insertion sort algorithm.

Algorithm Insertion Sort (A, n);
begin

for i := 2 to n do
x := A[i];
j := i;
while j > 1 and A[j − 1] > x do

A[j] := A[j − 1];
j := j − 1;

end while
A[j] := x;

end for
end

2



Draw a decision tree of the algorithm for the case of A[1..3], i.e., n = 3. In the
decision tree, you must indicate (1) which two elements of the original input array
are compared in each internal node and (2) the sorting result in each leaf. Please
use X1, X2, X3 to refer to the elements (in this order) of the original input array.

Appendix

• The solution of the recurrence relation T (n) = aT (n/b) + cnk, where a and b are
integer constants, a ≥ 1, b ≥ 2, and c and k are positive constants, is as follows.

T (n) =


O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

• Below is a non-recursive algorithm for determining whether a solution to the Knap-
sack Problem exists.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

3


