
Algorithms [April 18, 2011] Spring 2011

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise

marked.

Problems

1. Consider the following theorem regarding Gray codes, for which we have sketched

a proof by induction in class.

There exists a Gray code of length dlog2 ke for any number k ≥ 2 of

objects. The Gray codes for the even values of k are closed, and the Gray

codes for odd values of k are open.

Please complete the proof (giving sufficient details); in particular, try to be precise

about the length of a code in the proof. You should assume and use the following

facts in your proof:

(a) Given a closed Gray code for an even number k (≥ 2) of objects, we can

construct a closed Gray code with one additional bit for 2k objects.

(b) Given a closed Gray code of length i for 2i (i ≥ 1) objects, we can construct

an open Gray code of the same length for any odd k, 2i−1 < k < 2i, of objects.

(c) Given an open Gray code for an odd number k (≥ 2) of objects, we can

construct a closed Gray code with one additional bit for 2k objects.

2. Consider the following two-player game: given a positive integer N , player A and

player B take turns counting to N . In his turn, a player may advance the count

by 1 or 2. For example, player A may start by saying “1, 2”, player B follows by

saying “3”, player A follows by saying “4”, etc. The player who eventually has to

say the number N loses the game.

A game is determined if one of the two players always has a way to win the game.

Prove that the counting game as described is determined for any positive integer

N ; the winner may differ for different given integers. You must use induction in

your proof. (Hint: think about the remainder of the number N divided by 3.)
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3. We sometimes would use a diagram like the following to distribute n gifts (or assign

n tasks) to n people. The main part of the diagram covered, each person (without

seeing the horizontal line segments) is asked to choose one of the vertical lines.

After everyone has made a choice, the whole diagram is revealed. Following the

line chosen by pi, go down along the line and, whenever hitting an intersection,

must make a turn (to the left or right). The traced path will eventually reach a gift

at the end and the gift is given to pi.

p3 p2 p1 p5 p4

g1 g2 g3 g4 g5

s s
s s

s s
s s

s s

Prove by induction that such a diagram (with arbitrary numbers of vertical and

horizontal line segments) always produces a one-to-one mapping between the people

and the gifts (whose number equals that of the vertical lines).

4. For each of the following pairs of functions, determine whether f(n) = O(g(n))

and/or f(n) = Ω(g(n)). Justify your answers.

f(n) g(n)
(a) (log n)log n n

log n

(b) n32n 3n

5. Solve the following recurrence relation using generating functions. This is a very

simple recurrence relation, but you must use generating functions in your solution.
T (1) = 1
T (2) = 2
T (n) = 2T (n− 1)− T (n− 2), n ≥ 3

6. If f(x) is monotonically decreasing, then

n∑
i=1

f(i) ≤ f(1) +
∫ n

1
f(x)dx.

Show that this is indeed the case. (5 points)

7. Consider the Knapsack Problem: Given a set S of n items, where the i-th item has

an integer size S[i], and an integer K, find a subset of the items whose sizes sum

to exactly K or determine that no such subset exists.
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We have discussed in class two approaches to implementing a solution that we

designed by induction: one uses dynamic programming (see the Appendix), while

the other uses recursive function calls.

Suppose there are 5 items, with sizes 2, 3, 4, 5, 6, and we are looking for a subset

whose sizes sum to 13. Assuming recursive function calls are used, please give the

two-dimension table P whose entries are filled with -, O, I, or left blank when the

algorithm terminates. Which entries of P [n, K] are visited/computed more than

once?

8. Consider a variant of the Knapsack Problem where we want the subset to be as

large as possible (i.e., to be with as many items as possible). How will you adapt

the algorithm (see the Appendix) that we have studied in class? Your algorithm

should collect at the end the items in one of the best solutions if they exist. Please

present your algorithm in an adequate pseudo code and make assumptions wherever

necessary (you may reuse the code for the original Knapsack Problem). Give an

analysis of its time complexity. The more efficient your algorithm is, the more

points you will get for this problem.

9. Let x1, x2, . . ., xn be a set of integers, and let S =
∑n

i=1 xi. Design an algorithm to

partition the set into two subsets of equal sum, or determine that it is impossible to

do so. When the partitioning is possible, your algorithm should also give the two

subsets of integers. The algorithm should run in time O(nS).

10. In the towers of Hanoi puzzle, there are three pegs A, B, and C, with n (gener-

alizing the original eight) disks of different sizes stacked in decreasing order on peg

A. The objective is to transfer all the disks on peg A to peg B, moving one disk

at a time (from one peg to one of the other two) and never having a larger disk

stacked upon a smaller one.

(a) Give an algorithm to solve the puzzle. Compute the total number of moves in

the algorithm. (10 points)

(b) If there is an additional fourth peg D, it is possible to reduce the number of

moves. Please give a new algorithm that requires fewer moves. (5 points)

Appendix

• Below are several basic generating functions.
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generating func. power series generated sequence

1
1−z

1 + z + z2 + · · ·+ zn + · · · 1, 1, 1, · · · , 1, · · ·
c

1−az
c + caz + ca2z2 + · · ·+ canzn + · · · c, ca, ca2, · · · , can, · · ·

1
(1−z)2

1 + 2z + 3z2 + · · ·+ nzn−1 + · · · 1, 2, 3, · · · , n, · · ·
z

(1−z)2
z + 2z2 + 3z3 + · · ·+ nzn + · · · 0, 1, 2, 3, · · · , n, · · ·

• Below is an algorithm for determining whether a solution to the Knapsack Problem

exists.

Algorithm Knapsack (S,K);

begin

P [0, 0].exist := true;

for k := 1 to K do

P [0, k].exist := false;

for i := 1 to n do

for k := 0 to K do

P [i, k].exist := false;

if P [i− 1, k].exist then

P [i, k].exist := true;

P [i, k].belong := false

else if k − S[i] ≥ 0 then

if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;

P [i, k].belong := true

end
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