Algorithms Spring 2000

Midterm

(April 27, 2000)

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise marked.

Problems

1. Find a gray code of length [log, 14] (= 4) for 14 objects. Show how the gray code is

constructed systematically from gray codes of smaller lengths.
2. Below is a theorem from Manber’s book:

For all constants ¢ > 0 and @ > 1, and for all monotonically increasing

functions f(n), we have (f(n))° = O(af).
Prove, by using the above theorem, that n*(log n)* = O(n*?%). (5 points)

3. Show all intermediate and the final AVL trees formed by inserting the numbers 0, 1,
2,3,4,9,8, 7,6, and 5 (in this order). If a rotation is performed during an insertion,

please also show the tree before the rotation.

4. Write a program (in pseudo code) to merge two skylines.
An example skyline: (1,9.2,5.5,11,9,0,12.8,6.6,18,15,22.9).

5. The Knapsack Problem is defined as follows: Given a set S of n items, where the ith
item has an integer size S[i], and an integer K, find a subset of the items whose sizes

sum to exactly K or determine that no such subset exists.

Below is an algorithm for determining whether a solution to the problem exists.

Algorithm Knapsack (5, K);
begin

P[0,0].exist := true;

for £ :=1to K do

P[0, k].exist := false;
for s := 1 ton do
for £ := 0 to K do
Pli, kl.exist := false;
if P[i —1,k].exist then
Pli, k].exist := true;
Pli, k].belong := false
else if k£ — S[i] > 0 then
if P[i — 1,k — S[i]].exist then
Pli, k].exist := true;
Pli, k].belong := true

2
2

end

(a) Modify the algorithm to solve a variation of the knapsack problem where each item

has an unlimited supply.

(b) Design an algorithm to recover the solution recorded in the array P of the preceding

algorithm.

. Below is the algorithm that we studied in class for determining, given a sorted array A
of distinct integers, whether there exists an index ¢ such that A[:] = ¢. The idea of the
algorithm is good, but its pseudo code has a bug. Please identify the error and give an

example input for which the code produces an incorrect output or fails to terminate.

Algorithm Special Binary_Search (A, n);
begin
Position := Special _Find(1,n);

end

function Special Find (Left, Right) : integer;
begin
if Left = Right then
if A[Left] = Left then Special_Find := Left
else Special _Find := 0
else
Middle := [MW;
if X[Middle] < Middle then

10.

11.

Special _Find := Special _Find(Muiddle 4+ 1, Right)
else
Special _Find := Special _Find(Le ft, Muddle)

end

(5 points)

Given as input a sorted array A of n numbers and another number z, design an
algorithm with running time O(n) to determine whether there are two elements of A
whose sum is exactly z. (Hint: Recall the ideas of the O(n) soluton to the Celebrity

Problem discussed in class.)

Rearrange the following array into a heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(7 [t [5 [1n[10]14]3 [9 [8 [2 |13]4 |15]12]6 |

Show the result after each element is added to the part of array that already satisfies
the heap property.

A variation of the n-coins problem is defined as follows.

You are given a set of n coins {¢1, ¢, ..., ¢, }, among which at least n — 1 are
identical “true” coins and at most one coin is “false”; a false coin is lighter
than the other true coins. Also, you are given a balance scale, which you
may use to compare the total weight of any m coins with that of any other
m coins. The problem is to find the “false” coin, or show that there is no

such coin, by making some sequence of comparisons using the balance scale.

Show that in the worst case it is impossible to solve the n-coins problem with & com-

parisons (for any n and k) if n > (2F — 1).

Design an algorithm as efficient as possible to determine whether two sets of numbers
(represented as arrays) are disjoint. State the time complexity of your algorithm in

terms of the sizes m and n of the given sets.

Draw a Huffman tree for a text that contains eight characters A, B, C', D, F, F, G,
and H with frequencies 6, 2, 3, 5, 14, 8, 4, and 2, respectively.

