Algorithms [June 3, 1999] Spring 1998

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise marked.

Problems

1. Prove by induction that the regions formed by a planar graph all of whose vertices have
even degrees can be colored with two colors such that no two adjacent regions have the

same color.

2. For each of the following pairs of functions, decide if f(n) = O(g(n)) holds and if f(n) =
Q(g(n)) holds? Justify your answers.

f(n) 9(n)
(a) (logn)eer 2
(b) nd.2" 3n

3. In the towers of Hanoi puzzle, there are three pegs A, B, and C, with n (generalizing the
original eight) disks of different sizes stacked in decreasing order on peg A. The objective
is to transfer all the disks on peg A to peg B, moving one disk at a time (from one peg
to one of the other two) and never having a larger disk stacked upon a smaller one.

(a) Give an algorithm to solve the puzzle. Explain how induction works here. (10 points)
(b) Compute the total number of moves in the algorithm. Show the details of your

calculation. (5 points)

4. Construct a gray code of length [log, 12] (= 4) for 12 objects. Show how the gray code is

constructed from gray codes of smaller lengths. Your construction should be systematic.

5. Show all intermediate and the final AVL trees formed by inserting the numbers 0, 1, 2,
3,4,9,8,7,6,and 5 (in this order).

6. Apply the quicksort algorithm to the following array. Show the result after each partition

operation.

(7[5 1 J14af12]2[15]8|3[13[4]10]9]16]6|

7. Rearrange the following array into a heap using the buttom-up approach.

10.

12 3 4 5 6 7 8 9 10 11 12 13 14 15
(7 [2 [5 [11]9 [15]3 108 |1 |13 |4 |12 |14 [6 |

Show the result after each element is added to the part of array that already satisfies the
heap property.

. Write a program (or modify the following code) to recover the solution to a knapsack

problem using the belong flag. You should make your solution as efficient as possible.

Algorithm Knapsack (5, K);
begin
P|0,0].exist := true;
for £ :=1to K do
P[0, k].exist := false;
for::=1ton do
for £ :=0to K do
Pli, kl.exist :== false;
if P[i —1,k].exist then
Pli, k].exist := true;
Pli, k].belong := false
else if £ — S[i] > 0 then
if P[i — 1,k — S[i]].exist then
Pli, k].exist := true;
Pli, k].belong := true

end

Compute the next table as in the KMP algorithm for the string ababaababab. Show the

details of your calculation.

Explain why the time complexity of the KMP algorithm is O(n), where n is the length
of string A. (5 points)

