
Algorithms [April 25, 2017] Spring 2017

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Find the error in the following proof that all horses are the same color.

CLAIM: In any set of h horses, all horses are the same color.

PROOF: By induction on h.

Basis (h = 1): In any set containing just one horse, all horses clearly are the same
color.

Inductive step (h > 1): We assume that the claim is true for h = k (k ≥ 1) and
prove that it is true for h = k+1. Take any set H of k+1 horses. We show that all
the horses in this set are the same color. Remove one horse from this set to obtain
the set H1 with just k horses. By the induction hypothesis, all the horses in H1

are the same color. Now replace the removed horse and remove a different one to
obtain the set H2. By the same argument, all the horses in H2 are the same color.
Therefore all the horses in H must be the same color, and the proof is complete.

2. Consider the following two-player game: given a positive integer N , player A and
player B take turns counting to N . In his turn, a player may advance the count
by 1 or 2. For example, player A may start by saying “1, 2”, player B follows by
saying “3”, player A follows by saying “4”, etc. The player who eventually has to
say the number N loses the game.

A game is determined if one of the two players always has a way to win the game.
Prove that the counting game as described is determined for any positive integer
N ; the winner may differ for different given integers. You must use induction in
your proof. (Hint: think about the remainder of the number N divided by 3.)

3. Summations whose exact values are hard to compute may be easily and tightly
bounded by integrals. For example, if f(x) is monotonically decreasing, then

∫ n+1

1
f(x)dx ≤

n∑
i=1

f(i) ≤ f(1) +
∫ n

1
f(x)dx.

(a) Show that the bounds for
∑n

i=1 f(i) are indeed correct.

(b) Prove, using this bounding technique, that
∑n

i=1
1
i

= Θ(log n).

1



4. The Knapsack Problem that we discussed in class is defined as follows: Given a set
S of n items, where the ith item has an integer size S[i], and an integer K, find a
subset of the items whose sizes sum to exactly K or determine that no such subset
exists.

We have described in class an algorithm to solve the problem. Modify the algorithm
to solve a variation of the knapsack problem where each item has an unlimited
supply. In your algorithm, please change the type of P [i, k].belong into integer and
use it to record the number of copies of item i needed.

5. Show all intermediate and the final AVL trees formed by inserting the numbers 1,
2, 5, 7, 4, 3, and 6 (in this order) into an empty tree. Please use the following
ordering convention: the key of an internal node is larger than that of its left child
and smaller than that of its right child. If re-balancing operations are performed,
please also show the tree before re-balancing and indicate what type of rotation is
used in the re-balancing.

6. Below is the Mergesort algorithm in pseudocode:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left, Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d1

2
(Left + Right)e;

M Sort(Left,Middle− 1);
M Sort(Middle, Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i + 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left + t] := TEMP [1 + t]
end

Given the array below as input, what are the contents of array TEMP after the
merge part is executed for the first time and what are the contents of TEMP when
the algorithm terminates? Assume that each entry of TEMP has been initialized
to 0 when the algorithm starts.

2



1 2 3 4 5 6 7 8 9 10 11 12

7 8 3 6 5 9 11 2 1 12 4 10

7. The partition procedure in the Quicksort algorithm chooses an element as the pivot
and divide the input array A[1..n] into two parts such that, when the pivot is
properly placed in A[i], the entries in A[1..(i − 1)] are less than or equal to A[i]
and the entries in A[(i + 1)..n] are greater than or equal to A[i]. Please design an
extension of the partition procedure so that it chooses two pivots and divides the
input array into three parts. Assuming the two pivots are eventually placed in A[i]
and A[j] (i < j) respectively, the entries in A[1..(i − 1)] are less than or equal to
A[i], the entries in A[(i+ 1)..(j− 1)] are greater than or equal to A[i] and less than
or equal to A[j], and the entries in A[(j + 1)..n] are greater than or equal to A[j].

Please present your extension in adequate pseudocode and make assumptions wher-
ever necessary. Give an analysis of its time complexity. The more efficient your
algorithm is, the more points you will be credited for this problem.

8. Consider rearranging the following array into a max heap using the bottom-up ap-
proach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 7 5 1 9 13 6 4 11 10 12 15 14 8

Please show the result (i.e., the contents of the array) after a new element is added
to the current collection of heaps (at the bottom) until the entire array has become
a heap.

9. Two computers, each with a set of n integers, try to collaboratively find the n-th
smallest element of the union of the two sets. The two computers can communicate
by sending messages and they can perform any kind of local computation. A mes-
sage can contain one element or one integer; a message with two numbers should
be counted as two messages. Design an algorithm for the search task so that the
number of messages exchanged is minimized. You can assume, for simplicity, that
all the elements are distinct.

Please present your algorithm in an adequate pseudo code and make assumptions
wherever necessary. Give an analysis of its message complexity (the number of
messages exchanged). The more efficient your algorithm is, the more points you
will get for this problem.

10. Below is a variant of the bubble sort algorithm in pseudocode.

Algorithm Bubble Sort (A, n);
begin

i := n;
repeat

swapped := false;
for j := 1 to i− 1 do

if A[j] > A[j + 1] then
swap(A[j], A[j + 1]);

3



swapped := true;
end if

end for
i := i− 1;

repeat until (not swapped)
end

Draw a decision tree of the algorithm for the case of A[1..3], i.e., n = 3. In the
decision tree, you must indicate (1) which two elements of the original input array
are compared in each internal node and (2) the sorting result in each leaf. Please
use X1, X2, X3 (not A[1], A[2], A[3]) to refer to the elements (in this order) of the
original input array.

Appendix

• Below is an algorithm for determining whether a solution to the (original) Knapsack
Problem exists.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• Below is an alternative algorithm for partition in the Quicksort algorithm:

Partition (X,Left ,Right);
begin

pivot := X[left ];
i := Left ;
for j := Left + 1 to Right do

if X[j] < pivot then i := i + 1;
swap(X[i], X[j]);

Middle := i;
swap(X[Left ], X[Middle])

end

4


