
Algorithms [April 19, 2010] Spring 2010

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise

marked.

Problems

1. Reprove the following theorem which we have proven (mostly) in class. This time

you must apply the reversed induction principle, or a variant of it, in some part of

the proof.

There exist Gray codes of length dlog2 ke for any positive integer k ≥ 2.

The Gray codes for the even values of k are closed, and the Gray codes

for odd values of k are open.

2. Consider the following two-player game: given a positive integer N , player A and

player B take turns counting to N . In his turn, a player may advance the count

by 1 or 2. For example, player A may start by saying “1, 2”, player B follows by

saying “3”, player A follows by saying “4”, etc. The player who eventually has to

say the number N loses the game.

A game is determined if one of the two players always has a way to win the game.

Prove that the counting game as described is determined for any positive integer

N ; the winner may differ for different given integers. You must use induction in

your proof. (Hint: think about the remainder of the number N divided by 3.)

3. For each of the following pairs of functions, determine whether f(n) = O(g(n))

and/or f(n) = Ω(g(n)). Justify your answers.

f(n) g(n)

(a) n2

log n
n(log n)2

(b) n32n 3n

4. The Knapsack Problem is defined as follows: Given a set S of n items, where the

i-th item has an integer size S[i], and an integer K, find a subset of the items whose

sizes sum to exactly K or determine that no such subset exists.

1



Now consider a variant where we want the subset to be as large as possible (i.e.,

to be with as many items as possible). How will you adapt the algorithm (see the

Appendix) that we have studied in class? Your algorithm should collect at the end

the items in one of the best solutions if they exist. Please present your algorithm

in an adequate pseudo code and make assumptions wherever necessary (you may

reuse the code for the original Knapsack Problem). Give an analysis of its time

complexity. The more efficient your algorithm is, the more points you will get for

this problem.

5. Let x1, x2, . . ., xn be a set of integers, and let S =
∑n

i=1 xi. Design an algorithm to

partition the set into two subsets of equal sum, or determine that it is impossible to

do so. When the partitioning is possible, your algorithm should also give the two

subsets of integers. The algorithm should run in time O(nS).

6. Show all intermediate and the final AVL trees formed by inserting the numbers

6, 5, 4, 1, 2, and 3 (in this order) into an empty tree. Please use the following

ordering convention: the key of an internal node is larger than that of its left child

and smaller than that of its right child. If re-balancing operations are performed,

please also show the tree before re-balancing and indicate what type of rotation is

used in the re-balancing.

7. Let G(h) denote the least possible number of nodes contained in an AVL tree of

height h. Let us assume that the empty tree has height −1 and a single-node tree

has height 0. Please give a recurrence relation that characterizes (fully defines) G.

Based on the recurrence relation, prove that the height of an AVL tree of n nodes

is O(log n).

8. The Partition procedure for the Quicksort algorithm discussed in class is as follows,

where Middle is a global variable.

Partition (X,Left ,Right);

begin

pivot := X[left ];

L := Left ; R := Right ;

while L < R do

while X[L] ≤ pivot and L ≤ Right do L := L + 1;

while X[R] > pivot and R ≥ Left do R := R− 1;

if L < R then swap(X[L], X[R]);

Middle := R;

2



swap(X[Left ], X[Middle])

end

Find an adequate loop invariant for the main while loop, which is sufficient to show

that after the execution of the last two assignment statements the array is properly

partitioned by X[Middle]. Please express the loop invariant as precisely as possible,

using mathematical notation.

9. Consider rearranging the following array into a max heap using the bottom-up ap-

proach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 1 5 2 14 6 11 8 4 10 15 13 12 9

Please show the result (i.e., the contents of the array) after a new element is added

to the current collection of heaps (at the bottom) until the entire array has become

a heap.

10. Prove that the sum of the heights of all nodes in a complete binary tree with n

nodes is at most n− 1. You may assume it is known that the sum of the heights of

all nodes in a full binary tree of height h is 2h+1 − h− 2. (Note: a single-node tree

has height 0.)

Appendix

• The solution of the recurrence relation T (n) = aT (n/b) + cnk, where a and b are

integer constants, a ≥ 1, b ≥ 2, and c and k are positive constants, is as follows.

T (n) =


O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

• Below is an algorithm for determining whether a solution to the Knapsack Problem

exists.

Algorithm Knapsack (S,K);

begin

P [0, 0].exist := true;

for k := 1 to K do

P [0, k].exist := false;

for i := 1 to n do

for k := 0 to K do

3



P [i, k].exist := false;

if P [i− 1, k].exist then

P [i, k].exist := true;

P [i, k].belong := false

else if k − S[i] ≥ 0 then

if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;

P [i, k].belong := true

end

4


