
Algorithms [Compiled on April 29, 2004] Spring 2004

Suggested Solutions to Midterm Problems

Problems

1. Below is an algorithm for solving a variant of the Towers of Hanoi puzzle with an additional
fourth peg D; Towers Hanoi is an algorithm for the original puzzle.

Algorithm Four_Towers_Hanoi(A,B,C,D,n);

begin

if n<=2 then

Towers_Hanoi(A,B,C,n);

else

Four_Towers_Hanoi(A,D,B,C,n-2);

Towers_Hanoi(A,B,C,2);

Four_Towers_Hanoi(D,B,C,A,n-2);

end;

Let T (n) denote the number of moves needed for n disks. Write a recurrence relation for
T (n) and solve it.

Solution. Towers Hanoi(A,B,C,1) takes 1 move, while Towers Hanoi(A,B,C,2) takes 3
moves. A recurrence relation for T (n) is the following:

T (1) = 1
T (2) = 3
T (n) = 2T (n− 2) + 3, for n ≥ 3

We solve the recurrence relation by considering odd and even n’s separately.

When n (≥ 3) is odd,

T (n) = 2T (n− 2) + 3
2T (n− 2) = 2(2T (n− 4) + 3) = 22T (n− 4) + 2× 3

22T (n− 4) = 22(2T (n− 6) + 3) = 23T (n− 6) + 22 × 3
· · · · · ·

2
n−3

2 T (3) = 2
n−3

2 (2T (1) + 3) = 2
n−1

2 + 2
n−3

2 × 3
T (n) = 2

n−1
2 + 3× (2

n−1
2 − 1)

= 2
n+3

2 − 3

1



When n (≥ 3) is even,

T (n) = 2T (n− 2) + 3
2T (n− 2) = 2(2T (n− 4) + 3) = 22T (n− 4) + 2× 3

22T (n− 4) = 22(2T (n− 6) + 3) = 23T (n− 6) + 22 × 3
· · · · · ·

2
n−4

2 T (4) = 2
n−4

2 (2T (2) + 3) = 3× 2
n−2

2 + 2
n−4

2 × 3
T (n) = 3× 2

n−2
2 + 3× (2

n−2
2 − 1)

= 3× 2
n
2 − 3

2

2. Consider binary trees where each node stores a non-negative integer. Design an algorithm
that, given such a tree T and a non-negative integer k as input, determines whether T

contains a branch (from the root to a leaf) such that the sum of all numbers stored on
the nodes of the branch equals k. The more efficient your algorithm is, the more points
you will be credited for this problem. Is there a possibility that your code may overflow?
Have you avoided the problem? (15 points)

Solution.

Algorithm Check_Branch_Sum(T, s);

begin

if s >= 0 then

answer := Check_Branch(T, s);

else answer := false

end

procedure Check_Branch(T, s);

begin

if T = nil then return(false);

if (T^.left <> nil) or (T^.right <> nil) then

if T^.value <= s then

s := s - T^.value;

if Check_Branch(T^.left, s) or Check_Branch(T^.right, s) then

return(true);

else if T^.value = s then return(true);

return(false)

end

It is assumed that in the evaluation of a boolean condition “A or B”, B will not be
evaluated when A has been evaluated to true. It is also assumed that the value stored in
each node is non-negative and hence not checked. 2

2



3. Modify the following code for determining the sum of the maximum consecutive subse-
quence so that it also records the start and end indices of the subsequence.

Algorithm Max Consec Subseq (X,n);
begin

Global Max := 0;
Suffix Max := 0;
for i := 1 to n do

if x[i] + Suffix Max > Global Max then

Suffix Max := Suffix Max + x[i];
Global Max := Suffix Max

else if x[i] + Suffix Max > 0 then

Suffix Max := Suffix Max + x[i]
else Suffix Max := 0

end

Solution. (|�2)

Algorithm Max_Conseq_Subseq(X, n);

begin

Global_Max := 0;

Suffix_Max := 0;

Suffix_Start_Index := 0;

Global_Start_Index := 0;

Global_End_Index := 0;

for i := 1 to n do

if x[i] + Suffix_Max > Global_Max then

Suffix_Max := Suffix_Max + x[i];

Global_Max := Suffix_Max;

Global_Start_Index := Suffix_Start_Index;

Global_End_Index := i;

else if x[i] + Suffix_Max > 0 then

Suffix_Max := Suffix_Max + x[i];

else

Suffix_Max := 0

Suffix_Start_Index := i + 1;

end

2

4. Show all intermediate and the final AVL trees formed by inserting the numbers 4, 2, 1, 0,
7, 8, 9, 5, 6, and 3 (in this order) into an empty tree. Please use the following ordering

3



convention: the key of an internal node is larger than that of its left child and smaller
than that of its right child. If a rotation is performed during an insertion, please also show
the tree before the rotation. (15 points)

Solution. ({��)

4Insert(4)

Insert(2) 4

2

Insert(1)

1

4

2

Single rotation

1

2

4

Insert(0)

1

2

4

0

Insert(7)

1

2

4

0 7

Insert(8)

1

2

4

0 7

8

Single rotation

1

2

40

7

8

Insert(9)

1

2

40

7

8

9

Insert(5)

1

2

40

7

8

95

Insert(6)

1

2

40

7

8

95

6

Single rotation

1

2

4

0

7

8

9

5

6

Insert(3)

1

2

4

0

7

8

9

5

6

3

Double rotation

1

2

4

0

7

8

9

5

6

3

2

5. Please present the union-find algorithm with balancing and path compression in a suitable
pseudocode. (20 points)

Solution.

Algorithm Union_Find_Init(A,n);

4



begin

for i := 1 to n do

A[i].parent := nil;

A[i].size := 1

end

Algorithm Union(a,b);

begin

x := Find(a);

y := Find(b);

if x <> y then

if A[x].size > A[y].size then

A[y].parent := x;

A[x].size := A[x].size] + A[y].size;

else A[x].parent := y;

A[y].size := A[y].size] + A[x].size

end

Algorithm Find(a);

begin

if A[a].parent <> nil then

A[a].parent := Find(A[a].parent);

Find := A[a].parent;

else Find := a

end

2

6. Rearrange the following array into a (max) heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 5 10 9 15 7 6 4 1 13 8 14 12 11

Show the result after each element is added to the part of array that already satisfies the
heap property.

Solution. (?6*)

5



3 105 9 15 7 6 4 1 13 8 142 12 11

3 105 9 15 6 4 1 13 8 142 1112 7

3 105 9 12 6 4 1 13 8 142 7 1115

3 105 15 12 6 4 1 8 142 7 1113 9

3 5 13 15 12 6 4 1 9 8 142 7 1110

3 10 13 12 6 4 1 9 82 7 1115 14 5

1015 14 12 6 4 1 8 52 7 1113 9 3

13 10 9 12 6 4 1 3 5 7 1115 14 8 2

2 43 5 6 7 8 9 10 11 12 131 14 15

2

7. Design an algorithm that determines whether two sets of numbers (represented as arrays)
are disjoint; the more efficient your algorithm is, the more points you will be credited for
this problem. State the time complexity of your algorithm in terms of the sizes m and n

of the given sets. Be sure to consider the case where m is substantially larger than n.

Solution. The basic idea is to sort one of the two sets and use binary search to check if
some member of the other set appears in it. A little calculation shows that it is better to
sort the smaller set, resulting in a complexity of O((m + n) log n). 2

8. Draw a Huffman tree for a text with the following frequency distribution: A : 12, B : 7,
C : 6, D : 4, E : 15, F : 4, G : 3, and H : 2.

Solution. (?6*)

53

30 23

15

E
15

12

A
11

8
7

B

6

C
5

4

D

4

F

2

H

3

G

2

6


