
Algorithms [June 26, 2018] Spring 2018

Final

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. The partition procedure in the Quicksort algorithm chooses an element as the pivot
and divides the input array A[1..n] into two parts such that, when the pivot is
properly placed in A[i], the entries in A[1..(i − 1)] are less than or equal to A[i]
and the entries in A[(i + 1)..n] are greater than A[i]. The entries that are equal to
the pivot may be scattered anywhere in A[1..(i − 1)]. Please design a refinement
of the partition procedure so that it places all entries that are equal to the pivot
in consecutive locations. That is, after the refined partition, the entries equal to
the pivot are placed in locations from A[i] through A[j] for some i and j, where
1 ≤ i ≤ j ≤ n, such that the entries in A[1..(i− 1)] are less than the pivot and the
entries in A[(j + 1)..n] are greater than the pivot.

Please present your refinement in adequate pseudocode and make assumptions
wherever necessary. Give an analysis of its time complexity. The more efficient
your algorithm is, the more points you will be credited for this problem.

2. Give a binary de Bruijn sequence of 24 bits, which is a cyclic sequence of 24 bits
a1a2 · · · a24 such that each binary sequence of size 4 appears somewhere in the
sequence. Explain how you can systematically produce the sequence.

3. Consider Dijkstra’s algorithm for single-source shortest paths as shown below.

Algorithm Single Source Shortest Paths(G, v);
begin

for all vertices w do
w.mark := false;
w.SP := ∞;

v.SP := 0;
while there exists an unmarked vertex do

let w be an unmarked vertex s.t. w.SP is minimal;
w.mark := true;
for all edges (w, z) such that z is unmarked do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z)

end

1



The values of SP for all vertices may be stored in either an array or a heap. How do
these two implementations compare in terms of time complexity? Please explain.

4. Please explain, using an example, why Dijkstra’s algorithm does not work for graphs
that contain edges with a negative weight.

5. What is wrong with the following algorithm for computing the minimum-cost span-
ning tree of a given weighted undirected graph (assumed to be connected)?

If the input is just a single-node graph, return the single node. Otherwise,
divide the graph into two subgraphs, recursively compute their minimum-
cost spanning trees, and then connect the two spanning trees with an edge
between the two subgraphs that has the minimum weight.

6. Let G = (V,E) be a connected weighted undirected graph and T be a minimum-
cost spanning tree (MCST) of G. Suppose that the cost of one edge {u, v} in G
is increased ; {u, v} may or may not belong to T . Design an algorithm either to
find a new MCST or to determine that T is still an MCST. The more efficient your
algorithm is, the more points you will be credited for this problem. Explain why
your algorithm is correct and analyze its time complexity.

7. Below is the algorithm discussed in class for determining the strongly connected
components of a directed graph. The algorithm is based on depth-first search.
During the exploration of the neighbors of a particular node v on which the SCC
procedure is invoked, a neighboring node w may be found to have been visited.
The neighbor w is reached from v either via a cross edge or a back edge. How are
these two cases distinguished and how does the algorithm correctly handle these
two cases? Please explain.

Algorithm Strongly Connected Components(G, n);
begin

for every vertex v of G do
v.DFS Number := 0;
v.component := 0;

Current Component := 0; DFS N := n;
while v.DFS Number = 0 for some v do

SCC(v)
end

procedure SCC(v);
begin

v.DFS Number := DFS N ;
DFS N := DFS N − 1;
insert v into Stack;
v.high := v.DFS Number;
for all edges (v, w) do

if w.DFS Number = 0 then

2



SCC(w);
v.high := max(v.high, w.high)

else if w.DFS Number > v.DFS Number
and w.component = 0 then

v.high := max(v.high, w.DFS Number)
if v.high = v.DFS Number then

Current Component := Current Component + 1;
repeat

remove x from the top of Stack;
x.component := Current Component

until x = v
end

8. In the proof (discussed in class) of the NP-hardness of the clique problem by re-
duction from the SAT problem, we convert an arbitrary boolean expression in CNF
(input of the SAT problem) to an input graph of the clique problem.

(a) Please illustrate the conversion by drawing the graph that will be obtained
from the following boolean expression:

(x + z) · (w + x + y + z) · (x + y + z) · (w + y + z).

(b) The original boolean expression is satisfiable. As a demonstration of how the
reduction works, please use the resulting graph to argue that it is indeed the
case.

9. Let A ≤p B denote that Problem A is polynomially reducible to Problem B. Prove
that, for any pair of NP-complete problems A and B, A ≤p B and B ≤p A.

10. Solve one of the following two problems. (Note: if you try to solve both problems,
I will randomly pick one of them to grade.)

(a) The traveling salesman problem is as follows.

Given a weighted complete graph G = (V,E) (representing a set of
cities and the distances between all pairs of cities) and a number D,
does there exist a circuit (traveling-salesman tour) that includes all
the vertices (cities) and has a total length ≤ D?

Prove that the traveling salesman problem is NP-complete.

(b) The (standard) knapsack problem is as follows.

Given a set X, where each element x ∈ X has an associated size s(x)
and value v(x), and two other numbers S and V , is there a subset
B ⊆ X whose total size is ≤ S and whose total value is ≥ V ?

Prove that the knapsack problem is NP-complete.

3



Appendix

• Below is an alternative algorithm for partition in the Quicksort algorithm:

Partition (X,Left ,Right);
begin

pivot := X[left ];
i := Left ;
for j := Left + 1 to Right do

if X[j] ≤ pivot then i := i + 1;
swap(X[i], X[j]);

Middle := i;
swap(X[Left ], X[Middle])

end

• The Hamiltonian cycle problem: given an undirected graph G, does G have a
Hamiltonian cycle? (A Hamiltonian cycle in a graph is a cycle that contains each
vertex, except the starting vertex of the cycle, exactly once.)

The Hamiltonian cycle problem is NP-complete.

• The partition problem: given a set X where each element x ∈ X has an associated
size s(x), is it possible to partition the set into two subsets with exactly the same
total size?

The partition problem is NP-complete.

4


