Algorithms Spring 2000

Suggested Solutions to Midterm Problems
(Compiled on May 4, 2000)

1. Find a gray code of length [log, 14] (= 4) for 14 objects. Show how the gray code is con-

structed systematically from gray codes of smaller lengths.

Solution. Let (cy1,cy, ..., c,) denote the list c,,c,_1,...,c1.

Code of length 1 for 2 objects: 0, 1.

Code of length 2 for 2 objects: 00,01.

Code of length 2 for 3 objects: 00,01, 11 (which is open).

Code #1 of length 3 for 3 objects: 000,001, 011.

Code #2 of length 3 for 3 objects: 100, 101, 111.

Code of length 3 for 6 objects: 000,001,011, (100,101, 111)%.

Code of length 3 for 7 objects: 000,001,011,111,101,100, 110 (which is open).
Code #1 of length 4 for 7 objects: 0000,0001,0011,0111,0101,0100,0110.

Code #2 of length 4 for 7 objects: 1000, 1001,1011,1111,1101, 1100, 1110.

Code of length 4 for 14 objects:

0000, 0001,0011,0111,0101,0100,0110, (1000, 1001,1011,1111,1101, 1100, 1110)%
= 0000, 0001,0011,0111,0101,0100,0110, 1110, 1100, 1101, 1111, 1011, 1001, 1000. o

2. Below is a theorem from Manber’s book:

For all constants ¢ > 0 and a > 1, and for all monotonically increasing functions
f(n), we have (f(n))® = O(af™).
Prove, by using the above theorem, that n?(logn)* = O(n*?°). (5 points)
Solution. If we are able to show that (logn)? = O(n?%), then n%(logn)? = O(n? - n®) =
O (n22).
Applying the theorem with f(n) = logn, ¢ = 2, and @ = 22°, we have (logn)? = O((2:%)l°8") =
0(2.2510gn) — O(Qlogn'25) — O(TL'QS).
(Note: As usual, we have assumed the base of logarithm is 2. The same result can still be

obtained even if a different base is used.) O

3. Show all intermediate and the final AVL trees formed by inserting the numbers 0, 1, 2, 3, 4,
9,8,7,6,and 5 (in this order). If a rotation is performed during an insertion, please also

show the tree before the rotation.

Solution. See the attached. O



4. Write a program (in pseudo code) to merge two skylines.
An example skyline: (1,9.2,5.5,11,9,0,12.8,6.6,18,15,22.9).

Solution. This is part of Homework Assignment #3 (Programming Exercise #1). O

5. The Knapsack Problem is defined as follows: Given a set S of n items, where the ith item has
an integer size S[i], and an integer K, find a subset of the items whose sizes sum to exactly

K or determine that no such subset exists.

Below is an algorithm for determining whether a solution to the problem exists.

Algorithm Knapsack (S5, K);
begin
P[0, 0].exist := true;
for £ :=1to K do
P[0, k].exist := false;
for i := 1ton do
for £ := 0 to K do
Pli, k).exist := false;
if P[i—1,k].exist then
Pli, k).exist := true;
P[i, k].belong := false
else if k£ — S[i] > 0 then
if Pli — 1,k — S[i]].exist then
Pli, k].exist := true;
Pli, k].belong = true

end

(a) Modify the algorithm to solve a variation of the knapsack problem where each item has

an unlimited supply.

Solution. 1t suffices to modify the last five lines before “end” as follows:

Pli, k].belong := 0;
else P[i, k].belong := 0;
J=1
while £ — S[i] x 7 > 0 do
if P[i — 1,k — S[¢] x j].exist then
Pli, k].exist := true;
Pli, k].belong := j;
break;
J=J+t1L



a

(b) Design an algorithm to recover the solution recorded in the array P of the preceding

algorithm.

Solution.

Procedure Print_Solution (S, P, n, K);
begin
if =P[n, K].exist then
print “no solution”
else i := n;
k= K;
while £ > 0 do
if P[i, k].belong > 0 then
print 7, P[i, k].belong;
k =k — S[i] x P[i, k].belong;
1i=1—1

end

a

. Below is the algorithm that we studied in class for determining, given a sorted array A of
distinct integers, whether there exists an index 7 such that A[i] = i. The idea of the algorithm
is good, but its pseudo code has a bug. Please identify the error and give an example input

for which the code produces an incorrect output or fails to terminate.

Algorithm Special_Binary_Search (A, n);
begin
Position := Special _Find(1,n);

end

function Special_Find (Left, Right) : integer;
begin
if Left = Right then
if A[Left] = Left then Special _Find := Left
else Special Find :=0
else
Middle := [M'\;
if A[Middle] < Middle then
Special _Find := Special _Find(Middle + 1, Right)



else
Special _Find := Special _Find(Le ft, Middle)

end

(5 points)

Solution. The last five lines before “end” are problematic. Suppose we feed the algorithm with
a two-element array A = (—1,1). In the invokation of Special_Find(1,2), Middle will become
[142] = 2. Since A[2] =1 < 2 = Middle, an erroneous invokation Special _Find(3,2) occurs.
The final result is unpredictable. Depending on the values of the memory cells following A[2],

the program may fail to terminate or return some strange value.

A remedy is to change the assignment “Middle := [M]” to “Middle := LMJ”.
(Another possibility is to change the recursive calls “Special _Find(Middle + 1, Right)” and
“Special Find(Left, Middle)” respectively to  “Special_Find(Middle, Right)” and
“Special _Find(Left, Middle — 1)”.) ]

7. Given as input a sorted array A of n numbers and another number z, design an algorithm
with running time O(n) to determine whether there are two elements of A whose sum is
exactly z. (Hint: Recall the ideas of the O(n) soluton to the Celebrity Problem discussed in

class.)

Solution. The basic idea is that, if A[1]+ A[n] < z, then A[1] cannot be part of the solution
and, if A[1]+ A[n] > z, then A[n] cannot be part of the solution. In either case, we eliminated

one element from the array.

Algorithm Find_Two (4, n,z);

begin
1:=1;
ji=n

while 7 < 5 do
if A[i]+ A[j] = = then

break;

if A7l + A[j] < z then
=1+ 1;

else j := 5 — 1;

if i < j then
print 4, j;
else print “no solution”

end

The while loop will be executed at most n — 1 times, hence the running time of the algorithm

is O(n). o



8.

10.

Rearrange the following array into a heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(7 |1 |5 J11]10 |14 [3 [9 [8 [2 [13]4 [15 12 |6 |

Show the result after each element is added to the part of array that already satisfies the
heap property.

Solution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 1 5 11 |10 |14 | 3 9 8 2 13 | 4 15 |12 | 6

7 1 5 11 (10 |14 |12 |9 8 2 13 | 4 15 | 3 6

7 1 5 11 (10 |15 |12 |9 8 2 13 | 4 14 | 3 6

7 1 5 11 (13 |15 |12 |9 8 2 10 | 4 14 |3 6

7 1 5 11 [ 13 |15 |12 |9 8 2 10 | 4 14 |3 6

7 1 15 |11 (13 |14 |12 |9 8 2 10 | 4 5 3 6

7 13 |15 |11 |10 |14 |12 |9 8 2 1 4 5 3 6

15 |13 (14 |11 |10 |7 12 19 8 2 1 4 5 3 6

O
A variation of the n-coins problem is defined as follows.
You are given a set of n coins {cy,cq,...,¢,}, among which at least n — 1 are

identical “true” coins and at most one coin is “false”; a false coin is lighter than the
other true coins. Also, you are given a balance scale, which you may use to compare
the total weight of any m coins with that of any other m coins. The problem is to
find the “false” coin, or show that there is no such coin, by making some sequence

of comparisons using the balance scale.
Show that in the worst case it is impossible to solve the n-coins problem with & comparisons
(for any n and k) if n > (3% — 1).
Solution. All examinees will receive the full credit for this problem.
The inequality “n > (3¥ —1)” was erroneously stated as “n > (2% —1)” in the original problem

statement. This corrected version is left as an exercise. O

Design an algorithm as efficient as possible to determine whether two sets of numbers (rep-
resented as arrays) are disjoint. State the time complexity of your algorithm in terms of the

sizes m and n of the given sets.
Solution.
Algorithm Disjoint?(A, m, B, n);

begin
Heapsort(A, m);



11.

Heapsort(B,n);
1:=1;
J=1
while i < m and j < n do
if A[i] = B[j] then
break;
if A[i] < B[j] then
=1+ 1;
else j := 7+ 1;
if 2 > m or j > n then
print “yes”;
else print “no”

end

The invokations of Heapsort take O(mlogm + nlogn) = O(max(m, n) log(max(m,n))) time
and the while loop takes O(m + n) = O(max(m, n)) time. So, the time complexity of the

algorithm is O(max(m, n) log(max(m,n))). O

Draw a Huffman tree for a text that contains eight characters A, B, C', D, F, I, G, and H
with frequencies 6, 2, 3, 5, 14, 8, 4, and 2, respectively.

Solution. See the attached. O



