
Algorithms [November 10, 2020] Fall 2020

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. The set of all full binary trees that store non-negative integer key values may be
defined inductively as follows.

(a) FBT (k,⊥,⊥, 0), for any non-negative integer k, is a full binary tree of height
0.

(b) If tl and tr are full binary trees of height h, then FBT (k, tl, tr, h + 1), for any
non-negative integer k, is a full binary tree of height h + 1.

Please give a similar inductive definition for the set of all complete binary trees
(of the form CBT (·, ·, ·, ·)) that store non-negative integer key values. For in-
stance, CBT (6,⊥,⊥, 0) is a single-node complete binary tree storing key value
6 and CBT (8,CBT (6,⊥,⊥, 0),⊥, 1) is a complete binary tree with two nodes —
the root and its left child, storing key values 8 and 6 repsectively. Pictorially, they
may be depicted as below.

6

⊥⊥

8

⊥6

⊥⊥

2. Prove by induction that the sum of the heights of all nodes in a complete binary
tree with n nodes is at most n − 1. You may assume it is known that the sum of
the heights of all nodes in a full binary tree of height h is 2h+1 − h − 2. (Note: a
single-node tree has height 0.)

3. The Knapsack Problem that we discussed in class is defined as follows: Given a set
S of n items, where the ith item has an integer size S[i], and an integer K, find a
subset of the items whose sizes sum to exactly K or determine that no such subset
exists.

We have described in class an algorithm (see the Appendix) to solve the problem.
Please provide, for each of the following two requirements, a modification to the
algorithm that meets the requirement.

1



(a) The values of P [i, k].belong (0 ≤ i ≤ n and 0 ≤ k ≤ K) record the subset (if
one exists) with the fewest items whose sizes sum to K.

(b) The type of P [i, k].exists becomes integer and it gives the number of possible
subsets of items from S[1..i] whose sizes sum to exactly k. In this case, the
values of P [i, k].belong are not useful and can be omitted.

For each case, you may just indicate the changes that should be made to the original
algorithm.

4. You are asked to design a schedule for a round-robin tennis tournament. There
are n = 2k (k ≥ 1) players. Each player must play every other player, and each
player must paly one match per round for n − 1 rounds. Denote the players by
P1, P2, . . . , Pn. Output the schedule for each player. (Hint: use divide and conquer
in the following way. First, divide the players into two equal groups and let them
play within the groups for the first n

2
− 1 rounds. Then, design the games between

the groups for the other n
2

rounds.)

5. Consider the solutions to the union-find problem discussed in class. Suppose we
start with a collection of ten elements: A, B, C, D, E, F , G, H, I, and J ,
and the following sequence of operations are performed: union(A,B), union(C,D),
union(E,F), union(G,H), union(I,J), union(A,D), union(F,G), union(D,J),
union(J,H).

Assuming that both the balancing and the path compression techniques are used,
draw (1) a diagram showing the grouping of these ten elements immediately after
union(F,G) is performed and (2) another after the whole sequence of operations
are performed. In the case of combining two groups of the same size, please always
point the second group to the first.

6. Consider rearranging the following array into a max heap using the bottom-up ap-
proach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 2 7 5 1 13 8 6 4 11 10 14 15 12 9

Please show the result (i.e., the contents of the array) after a new element is added
to the current collection of heaps (at the bottom) until the entire array has become
a heap.

7. Draw a decision tree of the Mergesort algorithm for the case of A[1..3], i.e., n = 3.
In the decision tree, you must indicate (1) which two elements of the original input
array are compared in each internal node and (2) the sorting result in each leaf.
Please use X1, X2, X3 (not A[1], A[2], A[3]) to refer to the elements (in this order)
of the original input array A.

8. Construct a Huffman code tree for a text composed from seven characters A, B, C,
D, E, F, and G with frquencies 18, 10, 3, 8, 24, 4, and 10 respectively. And then,
list the codes for all the characters according to the code tree.

2



9. The next table is a precomputed table (for B = b1b2 · · · bm) that plays a critical role
in the KMP algorithm. Under what condition (regarding b1b2 · · · bi) does next [i]
(for i > 0) get a 0? And under what condition can it be safely set to −1 (without
missing a potential match)?

10. The Fibonacci word sequence of bit strings is defined as follows:

F (n) =


0 if n = 0
1 if n = 1
F (n− 1) · F (n− 2) if n ≥ 2

Here · denotes the operation of string concatenation. The first six Fibonacci words
(from F (0) to F (5)) are: 0, 1, 10, 101, 10110, 10110101.

Design an algorithm that, given a bit pattern p and a number n, determines whether
p occurs in F (n). For instance, 1101 occurs in F (5), but not F (4). Please present
your algorithm in adequate pseudocode. Explain why it is correct and give an
analysis of its time complexity. The more efficient your algorithm is, the more
points you will be credited for this problem.

Appendix

• An algorithm for determining whether a solution to the (original) Knapsack Prob-
lem exists:

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• The Mergesort algorithm:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then

3



Middle := d 12 (Left+Right)e;
M Sort(Left,Middle− 1);
M Sort(Middle,Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i+ 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left+ t] := TEMP [1 + t]
end

• The KMP algorithm (assuming next):

Algorithm String Match (A,n,B,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i+ 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i+ 1;
if j = m+ 1 then Start := i−m

end

• The algorithm for computing the next table in the KMP algorithm:

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

4


