
Algorithms [Compiled on May 6, 2012] Spring 2012

Suggested Solutions to Midterm Problems

1. Consider the geometric series: 1, 2, 4, 8, 16, . . .. Prove by induction that any positive
integer can be written as a sum of distinct numbers from this series.

Solution. The proof is by strong induction on n that represents an arbitrary positive
integer.

Base case (n = 1): the statement is obviously true, as 1 is itself in the geometric series.

Inductive step (n > 1): we consider two cases separately: when n is even and when n is
odd.

Case 1: n is even. Let n = 2 × k, where k ≥ 1. By the induction hypothesis, let k be
the sum of the series s1, s2, . . . , sj , which are distinct numbers taken from the geometric
series. Then, n is the sum of 2 × s1, 2 × s2, . . . , 2 × sj , which are also distinct numbers
from the geometric series.

Case 2: n is odd. Let n = 2× k + 1, where k ≥ 1. By the induction hypothesis, let k be
the sum of the series s1, s2, . . . , sj , which are distinct numbers from the geometric series.
Then, n is the sum of 1, 2 × s1, 2 × s2, . . . , 2 × sj , which are also distinct numbers from
the geometric series. 2

2. Consider a round-robin tournament among n players. In the tournament, each player
plays once against all other n−1 players. There are no draws, i.e., for a match between A
and B, the result is either A beat B or B beat A. Prove by induction that, after a round-
robin tournament, it is always possible to arrange the n players in an order p1, p2, · · · , pn

such that p1 beat p2, p2 beat p3, · · ·, and pn−1 beat pn. (Note: the “beat” relation, unlike
“≥”, is not transitive.)

Solution. The proof is by induction on the number n of players.

Base case (n = 2): There are exactly two players, say A and B. Either A beat B, in
which case we order them as A, B, or B beat A, in which case we order them as B, A.

Induction step (n > 2): Pick any of the n players, say A. From the induction hypothesis,
the other n− 1 players can be ordered as p1, p2, · · · , pn−1 such that p1 beat p2, p2 beat p3,
· · ·, and pn−2 beat pn−1. We now exam the result of the match played between A and p1.
If A beat p1, then we get a satisfying order A, p1, p2, · · · , pn−1. Otherwise (p1 beat A), we
continue to exam the result of the match played between A and p2. If A beat p2, then we
get a satisfying order p1, A, p2, · · · , pn−1. Otherwise (p2 beat A), we continue as before.
We end up either with p1, p2, · · · , pi−1, A, pi, · · · , pn−1 for some i ≤ n − 1 or eventually
with p1, p2, · · · , pn−1, A if A is beaten by every other player, in particular pn−1. 2

3. Consider the following variant of Euclid’s algorithm for computing the greatest common
divisor of two positive integers.

Algorithm Euclid Simplified (m, n);
begin

// assume that m > 0 ∧ n > 0
x := m;
y := n;

1



while x 6= 0 ∧ y 6= 0 do
if x < y then swap(x,y);
x := x− y;

od
. . .

end

where swap(x,y) exchanges the values of x and y.

(a) To speak about the values of a variable at different times during an execution, let
m′, n′, x′, and y′ denote respectively the new values of m, n, x, and y after the
next iteration of the while loop (m, n, x, and y themselves denote the current values
of these variables at the start of the next iteration). Please give a precise relation
between m′, n′, x′, and y′ and m, n, x, and y.

Solution. From the loop body, we deduce the following relationship (assuming that
the loop condition holds):

((x < y)→ (x′ = y − x) ∧ (y′ = x))
∧ ((x ≥ y)→ (x′ = x− y) ∧ (y′ = y))
∧ m′ = m
∧ n′ = n

2

(b) Prove by induction that the following is a loop invariant of the while loop:

x ≥ 0 ∧ y ≥ 0 ∧ (x 6= 0 ∨ y 6= 0) ∧ gcd(x, y) = gcd(m, n).

Solution. Let Inv(m, n, x, y) denote the assertion to be proven a loop invariant.
(1) When the flow of control reaches the loop for the first time, x = m and y = n, with
m > 0 and n > 0. Obviously, x ≥ 0, y ≥ 0, x 6= 0∨ y 6= 0, and gcd(x, y) = gcd(m, n)
and therefore the assertion Inv(m, n, x, y) holds.
(2) Assume that Inv(m, n, x, y) is true at the start of the next iteration and the loop
condition (x 6= 0 ∧ y 6= 0) holds. We need to show that Inv(m′, n′, x′, y′) also holds.
There are two cases to consider: when x < y and when x ≥ y. We prove the first
case; the second case can be proven similarly.
Suppose x < y. x′ = y−x > 0 and hence x′ ≥ 0; also, y′ = x ≥ 0 (from the induction
hypothesis). These also imply that x′ 6= 0 ∨ y′ 6= 0. gcd(x′, y′) = gcd(y − x, x) =
gcd(y, x) = gcd(x, y), which from the induction hypothesis equals gcd(m, n) =
gcd(m′, n′), and therefore gcd(x′, y′) = gcd(m′, n′). Therefore, Inv(m′, n′, x′, y′)
holds and this concludes the proof. 2

4. Consider bounding summations by integrals.

(a) If f(x) is monotonically increasing, then∫ n

0
f(x)dx ≤

n∑
i=1

f(i).

Show that this is indeed the case.

Solution. (Jing-Jie Lin)

2



This is easily seen by comparing the areas (on the R×R plane) defined by the formulae
on the two sides. As shown in the following diagram, the integral

∫ n
0 f(x)dx equals

the area under the curve that is shaded with thin parallel lines. The area is apparently
no larger than the total area of the vertical bars which represents

∑n
i=1 f(i).

0 1 2 3 n
x

f(x)

n-1

. . . 

2

(b) If f(x) is monotonically decreasing, then

n∑
i=1

f(i) ≤ f(1) +
∫ n

1
f(x)dx.

Show that this is indeed the case.

Solution. (Jing-Jie Lin)
Similar to the previous solution.

0 1 2 3 n
x

f(x)

. . . 

n-1

2

5. Show all intermediate and the final AVL trees formed by inserting the numbers 4, 5, 6, 1,
2, and 3 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution. (Jing-Jie Lin)

3



4 4

5

4

5

Single 
Rotation

Insert 2

Insert 6Insert 5
5

64

6

Insert 1
5

64

1

5

64

1

2

5

64

2

Double 
Rotation

Insert 3

1

5

62

1 4

5

62

1 4

3

Double 
Rotation 5

64

2

1 3

4

52

1 3 6

(Note: “Insert 4” is not shown.) 2

6. The input is a set S with n real numbers. Design an O(n) time algorithm to find a number
that is not in the set. Prove that Ω(n) is a lower bound on the number of steps required
to solve this problem.

Solution. When there is just one number (i.e., n = 1) in S, it is trivial to find a real
number different from the number in S, e.g., by adding one to or subtracting one from
the existing number. When there are exactly two numbers, we simply take their average
which will be different from both numbers, since by the definition of a set, all numbers in
S are distinct. When there are more than two numbers, we proceed as follows.

Store the first two numbers as a pair and read the remaining numbers one by one. When
the next number read falls between the pair, we replace the smaller of the pair by the
number just read. At the end we will have a pair of real numbers and none of the numbers
in S falls between the pair. We take the average of the pair which will be different any
number in S.

We next argue for the lower bound Ω(n). This is quite straightforward, since every number
in S must be read and there are n numbers. Any algorithm that skips a number may
return a wrong result, as the result may happen to be equal to the number that is skipped.
2

7. Let x1, x2, · · · , x2n−1, x2n be a sequence of 2n real numbers. Design an algorithm to
partition the numbers into n pairs such that the maximum of the n sums of pair is
minimized. It may be intuitively easy to get a correct solution. You must explain how
the algorithm can be designed using induction.

Solution. We first fix some notations:

• We represent a partition of a list x1, x2, · · · , x2n−1, x2n into n pairs as a set of sets
of two elements {{y1, y2}, {y3, y4}, · · · , {y2n−1, y2n}}, where y1, y2, · · · , y2n−1, y2n is a
permutation of x1, x2, · · · , x2n−1, x2n.

• For a list A of 2n elements, let MinMaxPair(A) denote some partition that meets
the problem requirement for 2n elements.

4



• A \B, where A is a list and B a set, denotes the list of elements in A but not in B.
We stipulate that elements in A \B appear in the same order as in A.

We are given a list X = x1, x2, · · · , x2n−1, x2n. If n = 1, i.e., there are only two elements,
the solution is obvious, namely {{x1, x2}}. Now consider the cases of n > 1. Let y1 denote
the smallest element and y2n the largest element in X. We claim that MinMaxPair(X \
{y1, y2n}) ∪ {{y1, y2n}} meets the problem requirement for 2n elements, i.e., the pair
{y1, y2n} is part of an optimal partition. Suppose {yi, yj} is the pair with the largest sum
in MinMaxPair(X \ {y1, y2n}). Pairing y2n with either yi or yj (instead of y1) would
produce a pair whose sum is at least as large as that of {y1, y2n} and that of any pair in
MinMaxPair(X−{y1, y2n}). To compute MinMaxPair(X \{y1, y2n}), we need to solve
the same problem with two elements less and here we invoke the induction hypothesis.

In the above, we select and remove the smallest and the largest elements from the current
list in each step. This would incur a complexity of O(n) for each step, making the
complexity of the whole algorithm O(n2). We can improve this by sorting the list right
in the beginning before pairing up the elements. So, the algorithm can be summarized as
follows.

(a) Sort the input list X to get Y .

(b) Suppose the current list Y = y1, y2, · · · , y2i−1, y2i (i ≥ 1). Remove and output the
pair {y1, y2i} from Y .

(c) Repeat the previpus step until Y is empty.

2

8. Apply the Quicksort algorithm to the following array. Show the contents of the array
after each partition operation. If you use a different partition algorithm (from the one
discussed in class), please describe it.

1 2 3 4 5 6 7 8 9 10 11 12
10 9 4 7 12 6 8 2 1 11 5 3

Solution. (Wei-Hsien Chang)

1 2 3 4 5 6 7 8 9 10 11 12
10 9 4 7 12 6 8 2 1 11 5 3
5 9 4 7 3 6 8 2 1 10 11 12
3 1 4 2 5 6 8 7 9 10 11 12
2 1 3 4 5 6 8 7 9 10 11 12
1 2 3 4 5 6 8 7 9 10 11 12
1 2 3 4 5 6 8 7 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12

2

9. Consider rearranging the following array into a max heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 3 5 1 2 6 14 8 11 4 10 13 15 9 12

Please show the result (i.e., the contents of the array) after a new element is added to the
current collection of heaps (at the bottom) until the entire array has become a heap.

5



Solution. (Jui-Shun Lai)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 3 5 1 2 6 14 8 11 4 10 13 15 9 12
7 3 5 1 2 6 14 8 11 4 10 13 15 9 12
7 3 5 1 2 15 14 8 11 4 10 13 6 9 12
7 3 5 1 10 15 14 8 11 4 2 13 6 9 12
7 3 5 11 10 15 14 8 1 4 2 13 6 9 12
7 3 15 11 10 13 14 8 1 4 2 5 6 9 12
7 11 15 8 10 13 14 3 1 4 2 5 6 9 12
15 11 14 8 10 13 12 3 1 4 2 5 6 9 7

2

10. Prove that the sum of the heights of all nodes in a complete binary tree with n nodes is
at most n− 1. You may assume it is known that the sum of the heights of all nodes in a
full binary tree of height h is 2h+1 − h− 2. (Note: a single-node tree has height 0.)

Solution. Let G(n) denote the sum of the heights of all nodes in a complete binary
tree with n nodes. For a full binary tree (a special case of complete binary trees) with
n = 2h+1 − 1 nodes where h is the height of the tree, we already know that G(n) =
2h+1 − (h + 2) = n− (h + 1) ≤ n− 1. With this as a basis, we prove the general case of
arbitrary complete binary trees by induction on the number n (≥ 1) of nodes.

Base case (n = 1 or n = 2): When n = 1, the tree is the smallest full binary tree with one
single node whose height is 0. So, G(n) = 0 ≤ 1 − 1 = n − 1. When n = 2, the tree has
one additional node as the left child of the root. The height of the root is 1, while that of
its left child is 0. So, G(n) = 1 ≤ 2− 1 = n− 1.

Inductive step (n > 2): If n happens to be equal to 2h+1 − 1 for some h ≥ 1, i.e., the tree
is full, then we are done; note that this covers the case of n = 3 = 21+1 − 1. Otherwise,
suppose 2h+1− 1 < n < 2h+2− 1 (h ≥ 1), i.e., the tree is a “proper” complete binary tree
with height h + 1 ≥ 2. We observe that at least one of the two subtrees of the root is full,
while the other is complete (possibly full). There are three cases to consider:

Case 1: The left subtree is full with n1 nodes and the right one is complete but not
full with n2 nodes (such that n1 + n2 + 1 = n). In this case, both subtrees much be
of height h and n1 = 2h+1 − 1. ¿From the special case of full binary trees and the
induction hypothesis, G(n1) = 2h+1 − (h + 2) = n1 − (h + 1) and G(n2) ≤ n2 − 1.
G(n) = G(n1)+G(n2)+(h+1) ≤ (n1−(h+1))+(n2−1)+(h+1) = (n1+n2+1)−2 ≤ n−1.

Case 2: The left subtree is full with n1 nodes and the right one is also full with n2 nodes.
In this case, the left subtree much be of height h and n1 = 2h+1 − 1, while the right
subtree much be of height h − 1 and n2 = 2h − 1. ¿From the special case of full binary
trees, G(n1) = 2h+1 − (h + 2) = n1 − (h + 1) and G(n2) = 2h − (h + 1) = n2 − h. G(n) =
G(n1)+G(n2)+(h+1) ≤ (n1−(h+1))+(n2−h)+(h+1) = (n1+n2+1)−(h+1) ≤ n−1.

Case 3: The left subtree is complete but not full with n1 nodes and the right one is
full with n2 nodes. In this case, the left subtree much be of height h, while the right
subtree much be of height h − 1 and n2 = 2h − 1. ¿From the induction hypothesis and
the special case of full binary trees, G(n1) ≤ n1 − 1 and G(n2) = 2h − (h + 1) = n2 − h.
G(n) = G(n1)+G(n2)+(h+1) ≤ (n1−1)+(n2−h)+(h+1) = (n1 +n2 +1)−1 = n−1.
2

6


