
Algorithms [Compiled on May 22, 2008] Spring 2008

Suggested Solutions to Midterm Problems

Problems

1. Construct an open gray code of length dlog2 19e (= 5) for 19 objects. Please describe how
the gray code is constructed systematically from gray codes of smaller lengths.

Solution.
Let (c1, c2, . . . , cn)R denote the list cn, cn−1, . . . , c1.

19 = 2×9+1; 9 = 2×4+1; 4 = 2×2. So, we will start with building a code for 2 objects
and then codes for 4, 8, 9, 18, and finally 19 objects.

Code of length 1 for 2 objects: 0, 1.
Code #1 of length 2 for 2 objects: 00, 01.
Code #2 of length 2 for 2 objects: 10, 11.
Code of length 2 for 4 objects: 00, 01, (10, 11)R.
Code of length 2 for 4 objects: 00, 01, 11, 10.
Code #1 of length 3 for 4 objects: 000, 001, 011, 010.
Code #2 of length 3 for 4 objects: 100, 101, 111, 110.
Code of length 3 for 8 objects: 000, 001, 011, 010, (100, 101, 111, 110)R.
Code of length 3 for 8 objects: 000, 001, 011, 010, 110, 111, 101, 100.
Code of length 4 for 9 objects: 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,1100. (open)
Code #1 of length 5 for 9 objects: 00000, 00001, 00011, 00010, 00110, 00111, 00101, 00100,01100.
Code #2 of length 5 for 9 objects: 10000, 10001, 10011, 10010, 10110, 10111, 10101, 10100,11100.
Code of length 5 for 18 objects: 00000, 00001, 00011, 00010, 00110, 00111, 00101, 00100, 01100,

(10000, 10001, 10011, 10010, 10110, 10111, 10101, 10100, 11100)R.
Code of length 5 for 18 objects: 00000, 00001, 00011, 00010, 00110, 00111, 00101, 00100, 01100,

11100, 10100, 10101, 10111, 10110, 10010, 10011, 10001, 10000.
Code of langth 5 for 19 objects: 00000, 00001, 00011, 00010, 00110, 00111, 00101, 00100, 01100,

11100, 10100, 10101, 10111, 10110, 10010, 10011, 10001, 10000,11000. (open)
2

2. Consider the following program segment in the celebrity algorithm.

i := 1;

j := 2;

next := 3;

while next <= n+1 do

if Know[i,j] then i:= next

else j := next;

1



next := next + 1;

end;

if i = n+1 then candidate := j

else candidate := i;

(a) Find an appropriate loop invariant for the while loop that is sufficient to show that
candidate will be the only possible candidate for the celebrity after the execution of the
segment.

Solution. An appropriate loop invariant is “if k is the celebrity, then k = i, k = j, or
next ≤ k ≤ n” (plus 1 ≤ i ≤ next , 2 ≤ j ≤ next , 3 ≤ next ≤ n + 2, which is omitted for
brevity). 2

(b) Prove that the loop invariant found above is indeed a loop invariant.

Solution. We need to show that (1) the assertion is true at the beginning of the loop and
(2) given that the assertion is true and the condition of the while loop holds, the assertion
will still be true after the loop body is executed.
(1) At the beginning of the loop, i = 1, j = 2, and next = 3. Apparently, if k is the
celebrity, then 1 ≤ k ≤ n and hence k = 1 = i, k = 2 = j, or next = 3 ≤ k ≤ n.
(2) Now we assume that the assertion “if k is the celebrity, then k = i, k = j, or next ≤
k ≤ n” is true before the next iteration and the loop condition holds, i.e., next ≤ n + 1.
Let i′, j′, and next ′ denote respectively the values of i, j, and next after the iteration. We
need to show that “if k is the celebrity, then k = i′, k = j′, or next ′ ≤ k ≤ n”. From the
loop body, we deduce the following relationship:

i′ =

{
next if Know [i, j]
i otherwise

j′ =

{
next if ¬Know [i, j]
j otherwise

next ′ = next + 1

There are two cases to consider: Know [i, j] and ¬Know [i, j]. In the first case, i cannot be
the celebrity. So, the truth of “if k is the celebrity, then k = i, k = j, or next ≤ k ≤ n”
implies that of “if k is the celebrity, then k = j, or next ≤ k ≤ n”, which is equivalent
to “if k is the celebrity, then k = j, k = next , or next + 1 ≤ k ≤ n”. Since i′ = next ,
j′ = j and next ′ = next + 1, it follows that “if k is the celebrity, then k = i′, k = j′,
or next ′ ≤ k ≤ n”, which concludes the first case. The second case be carried out in an
analogous manner. 2

3. Find the asymptotic behavior of the function T (n) defined as follows:{
T (1) = 1
T (n) = 4T (n/2) + n2, n = 2i (i ≥ 1)

2



You should try to solve this problem without resorting to the general theorem for divide-
and-conquer relations discussed in class. The asymptotic bound should be as tight as
possible. (Hint: guess and verify by induction.)

Solution. We guess that T (n) = O(n2 log n) (from “vague memory” of Theorem 3.4 in
Manber’s book or after having tried O(n2) and O(n3)). We verify this by an inductive
proof that T (n) ≤ 2n2 log n, for all n = 2i ≥ 2 (i.e., we are taking N to be 2 and c also to
be 2 in the definition of O).

Base case (n = 2): T (2) = 4T (1) + 22 = 8 ≤ 2× 22 log 2.
Inductive step (2n = 2i, i > 1):

T (2n) = 4T (n) + (2n)2

≤ 4(2n2 log n) + 4n2 (from the induction hypothesis)
≤ 8n2 log n + 8n2

= 2(2n)2(log n + 1)
= 2(2n)2(log n + log 2)
= 2(2n)2 log 2n.

2

4. Show all intermediate and the final AVL trees formed by inserting the numbers 9, 7, 1, 0,
2, 5, 8, 4, 6, and 3 (in this order) into an empty tree. Please use the following ordering
convention: the key of an internal node is larger than that of its left child and smaller
than that of its right child. If re-balancing operations are performed, please also show the
tree before re-balancing and indicate what type of rotation is used in the re-balancing.

Solution.

9 9

7

9

7

1

1

7

9

0

1

7

9insert 7// insert 1// single rotation// insert 0//
����

����

����

���� ////

����

���� ////

0

1

7

9

2 0

1

7

9

2

5

0

1 7

2

95 0

1 7

2

95

8

insert 5//
����

����

////

////

////

double rotation//
����

////����

����
////

insert 8//
���� ����

���� ////

////

����

insert 2//
����

���� ////

////

3



0

1 7

2

95

4 8

0

1 7

2

95

4 86

0

1 7

2

95

4 86

3

5

2

1

0

4

3

7

6 9

8

insert 4//
����

����

////

����
////

����
����

insert 6//
����

����

////

����
////

����
))))

����

insert 3//
����

����

////

����
////

����
))))

����

����

double rotation//
�����

?????

����
////

����
����

����
////

����

2

5. Consider solutions to the union-find problem discussed in class. Suppose we start with a
collection of ten elements: A, B, C, D, E, F , G, H, I, and J .

(a) Assuming the balancing, but not path compression, technique is used, draw a dia-
gram showing the grouping of these ten elements after the following operations are
completed:

i. union(A,B)

ii. union(C,D)

iii. union(E,F)

iv. union(G,H)

v. union(I,J)

vi. union(A,D)

vii. union(F,G)

viii. union(D,J)

ix. union(D,H)

In the case of combining two groups of the same size, please always point the second
group to the first.

Solution.

2

4



(b) Repeat the above, but with both balancing and path compression.

Solution.

2

6. The Knapsack Problem is defined as follows: Given a set S of n items, where the ith item
has an integer size S[i], and an integer K, find a subset of the items whose sizes sum to
exactly K or determine that no such subset exists.

Below is an algorithm for determining whether a solution to the problem exists.

Algorithm Knapsack (S, K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do

P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then

if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

(a) Design an algorithm to recover the solution recorded in the array P . (5 points)

Solution.

Procedure Print Solution (S, P, n, K);
begin

5



if ¬P [n, K].exist then

print “no solution”
else i := n;

k := K;
while k > 0 do

if P [i, k].belong = true then

print i;
k := k − S[i];

i := i− 1
end

2

(b) Modify the given algorithm to solve a variation of the knapsack problem where each
item has an unlimited supply. (10 points)

Solution. Insert “P [0, 0].belong := 0;” after “P [0, 0].exist := true;” and modify the
last five lines before “end” as follows:

P [i, k].belong := 0
else if k − S[i] ≥ 0 then

if P [i, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := P [i, k − S[i]].belong + 1

2

7. Consider rearranging the following array into a max heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 7 3 5 9 14 8 11 6 4 10 15 13 12 2

Please show the result (i.e., the contents of the array) after a new element is added to the
current collection of heaps (at the bottom) until the entire array has become a heap.

Solution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 7 3 5 9 14 8 11 6 4 10 15 13 12 2
1 7 3 5 9 14 12 11 6 4 10 15 13 8 2
1 7 3 5 9 15 12 11 6 4 10 14 13 8 2
1 7 3 5 10 15 12 11 6 4 9 14 13 8 2
1 7 3 11 10 15 12 5 6 4 9 14 13 8 2
1 7 15 11 10 14 12 5 6 4 9 3 13 8 2
1 11 15 7 10 14 12 5 6 4 9 3 13 8 2
15 11 14 7 10 13 12 5 6 4 9 3 1 8 2

2

6



8. Prove that the sum of the heights of all nodes in a complete binary tree with n nodes
is at most n − 1. (A complete binary tree with n nodes is one that can be compactly
represented by an array A of size n, where the root is stored in A[1] and the left and the
right children of A[i], 1 ≤ i ≤ bn

2 c, are stored respectively in A[2i] and A[2i + 1]. Notice
that, in Manber’s book a complete binary tree is referred to as a balanced binary tree
and a full binary tree as a complete binary tree. Manber’s definitions seem to be less
frequently used. Do not let the different names confuse you.)

Solution. Let G(n) denote the sum of the heights of all nodes in a complete binary
tree with n nodes. For a full binary tree (a special case of complete binary trees) with
n = 2h+1 − 1 nodes where h is the height of the tree, we already know that G(n) =
2h+1 − (h + 2) = n− (h + 1) ≤ n− 1. With this as a basis, we prove the general case of
arbitrary complete binary trees by induction on the number n (≥ 1) of nodes.

Base case (n = 1 or n = 2): When n = 1, the tree is the smallest full binary tree with one
single node whose height is 0. So, G(n) = 0 ≤ 1 − 1 = n − 1. When n = 2, the tree has
one additional node as the left child of the root. The height of the root is 1, while that of
its left child is 0. So, G(n) = 1 ≤ 2− 1 = n− 1.

Inductive step (n > 2): If n happens to be equal to 2h+1 − 1 for some h ≥ 1, i.e., the tree
is full, then we are done; note that this covers the case of n = 3 = 21+1 − 1. Otherwise,
suppose 2h+1− 1 < n < 2h+2− 1 (h ≥ 1), i.e., the tree is a “proper” complete binary tree
with height h + 1 ≥ 2. We observe that at least one of the two subtrees of the root is full,
while the other is complete (possibly full). There are three cases to consider:

Case 1: The left subtree is full with n1 nodes and the right one is complete but not full
with n2 nodes (such that n1 +n2 +1 = n). In this case, both subtrees much be of height h

and n1 = 2h+1−1. From the special case of full binary trees and the induction hypothesis,
G(n1) = 2h+1−(h+2) = n1−(h+1) and G(n2) ≤ n2−1. G(n) = G(n1)+G(n2)+(h+1) ≤
(n1 − (h + 1)) + (n2 − 1) + (h + 1) = (n1 + n2 + 1)− 2 ≤ n− 1.

Case 2: The left subtree is full with n1 nodes and the right one is also full with n2 nodes.
In this case, the left subtree much be of height h and n1 = 2h+1 − 1, while the right
subtree much be of height h − 1 and n2 = 2h − 1. From the special case of full binary
trees, G(n1) = 2h+1 − (h + 2) = n1 − (h + 1) and G(n2) = 2h − (h + 1) = n2 − h. G(n) =
G(n1)+G(n2)+(h+1) ≤ (n1−(h+1))+(n2−h)+(h+1) = (n1+n2+1)−(h+1) ≤ n−1.

Case 3: The left subtree is complete but not full with n1 nodes and the right one is
full with n2 nodes. In this case, the left subtree much be of height h, while the right
subtree much be of height h − 1 and n2 = 2h − 1. From the induction hypothesis and
the special case of full binary trees, G(n1) ≤ n1 − 1 and G(n2) = 2h − (h + 1) = n2 − h.
G(n) = G(n1)+G(n2)+(h+1) ≤ (n1−1)+(n2−h)+(h+1) = (n1 +n2 +1)−1 = n−1.
2

9. Let x1, x2, · · · , x2n−1, x2n be a sequence of 2n real numbers. Design an algorithm to
partition the numbers into n pairs such that the maximum of the n sums of pair is

7



minimized. It may be intuitively easy to get a correct solution. You must explain how
the algorithm can be designed using induction. (15 points)

Solution. We first fix some notations:

• We represent a partition of a list x1, x2, · · · , x2n−1, x2n into n pairs as a set of sets
of two elements {{y1, y2}, {y3, y4}, · · · , {y2n−1, y2n}}, where y1, y2, · · · , y2n−1, y2n is a
permutation of x1, x2, · · · , x2n−1, x2n.

• For a list A of 2n elements, let MinMaxPair(A) denote some partition that meets
the problem requirement for 2n elements.

• A \B, where A is a list and B a set, denotes the list of elements in A but not in B.
We stipulate that elements in A \B appear in the same order as in A.

We are given a list X = x1, x2, · · · , x2n−1, x2n. If n = 1, i.e., there are only two elements,
the solution is obvious, namely {{x1, x2}}. Now consider the cases of n > 1. Let y1 denote
the smallest element and y2n the largest element in X. We claim that MinMaxPair(X \
{y1, y2n}) ∪ {{y1, y2n}} meets the problem requirement for 2n elements, i.e., the pair
{y1, y2n} is part of an optimal partition. Suppose {yi, yj} is the pair with the largest sum
in MinMaxPair(X \ {y1, y2n}). Pairing y2n with either yi or yj (instead of y1) would
produce a pair whose sum is at least as large as that of {y1, y2n} and that of any pair in
MinMaxPair(X−{y1, y2n}). To compute MinMaxPair(X \{y1, y2n}), we need to solve
the same problem with two elements less and here we invoke the induction hypothesis.

In the above, we select and remove the smallest and the largest elements from the current
list in each step. This would incur a complexity of O(n) for each step, making the
complexity of the whole algorithm O(n2). We can improve this by sorting the list right
in the beginning before pairing up the elements. So, the algorithm can be summarized as
follows.

(a) Sort the input list X to get Y .

(b) Suppose the current list Y = y1, y2, · · · , y2i−1, y2i (i ≥ 1). Remove and output the
pair {y1, y2i} from Y .

(c) Repeat the previpus step until Y is empty.

2

8


