
Algorithms [April 19, 2016] Spring 2016

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Given a set of n + 1 numbers out of the first 2n (starting from 1) natural numbers
1, 2, 3, . . ., 2n, prove by induction that there are two numbers in the set, one of
which divides the other.

2. Prove by induction that the sum of the heights of all nodes in a complete binary
tree with n nodes is at most n − 1. You may assume it is known that the sum of
the heights of all nodes in a full binary tree of height h is 2h+1 − h − 2. (Note: a
single-node tree has height 0.)

3. Consider bounding summations by integrals.

(a) If f(x) is monotonically increasing, then

∫ n

0
f(x)dx ≤

n∑
i=1

f(i).

Show that this is indeed the case.

(b) If f(x) is monotonically decreasing, then

n∑
i=1

f(i) ≤ f(1) +
∫ n

1
f(x)dx.

Show that this is indeed the case.

4. Consider a variant of the Knapsack Problem where we want the subset to be as
large as possible (i.e., to be with as many items as possible). How will you adapt the
algorithm (see the Appendix) that we have studied in class? Your algorithm should
collect at the end the items in one of the best solutions if they exist. Please present
your algorithm in adequate pseudocode and make assumptions wherever necessary
(you may reuse the code for the original Knapsack Problem). Give an analysis of
its time complexity. The more efficient your algorithm is, the more points you will
get for this problem.

5. Show all intermediate and the final AVL trees formed by inserting the numbers 7,
5, 2, 1, 4, 3, and 6 (in this order) into an empty tree. Please use the following
ordering convention: the key of an internal node is larger than that of its left child

1



and smaller than that of its right child. If re-balancing operations are performed,
please also show the tree before re-balancing and indicate what type of rotation is
used in the re-balancing.

6. Below is the Mergesort algorithm in pseudocode:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left, Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d1

2
(Left + Right)e;

M Sort(Left,Middle− 1);
M Sort(Middle, Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i + 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left + t] := TEMP [t]
end

Given the array below as input, what are the contents of array TEMP after the
merge part is executed for the first time and what are the contents of TEMP when
the algorithm terminates? Assume that each entry of TEMP has been initialized
to 0 when the algorithm starts.

1 2 3 4 5 6 7 8 9 10 11 12

9 10 4 6 11 7 8 2 1 12 3 5

7. The partition procedure in the Quicksort algorithm chooses an element as the pivot
and divide the input array A[1..n] into two parts such that, when the pivot is
properly placed in A[i], the entries in A[1..(i − 1)] are less than or equal to A[i]
and the entries in A[(i + 1)..n] are greater than or equal to A[i]. Please design an
extension of the partition procedure so that it chooses two pivots and divides the
input array into three parts. Assuming the two pivots are eventually placed in A[i]
and A[j] (i < j) respectively, the entries in A[1..(i − 1)] are less than or equal to

2



A[i], the entries in A[(i+ 1)..(j− 1)] are greater than or equal to A[i] and less than
or equal to A[j], and the entries in A[(j + 1)..n] are greater than or equal to A[j].

Please present your extension in adequate pseudocode and make assumptions wher-
ever necessary. Give an analysis of its time complexity. The more efficient your
algorithm is, the more points you will be credited for this problem.

8. Consider rearranging the following array into a max heap using the bottom-up ap-
proach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 3 7 2 1 9 15 6 4 11 10 12 13 14 8

Please show the result (i.e., the contents of the array) after a new element is added
to the current collection of heaps (at the bottom) until the entire array has become
a heap.

9. Your task is to design an in-place algorithm that sorts an array of numbers according
to a prescribed order. The input is a sequence of n numbers x1, x2, · · ·, xn and
another sequence a1, a2, · · ·, an of n distinct numbers between 1 and n (i.e., a1, a2,
· · ·, an is a permutation of 1, 2, · · ·, n), both represented as arrays. Your algorithm
should sort the first sequence according to the order imposed by the permutation
as prescribed by the second sequence. For each i, xi should appear in position ai
in the output array. As an example, if x = 23, 9, 5, 17 and a = 4, 1, 3, 2, then the
output should be x = 9, 17, 5, 23.

Please describe your algorithm as clearly as possible; it is not necessary to give
the pseudocode. Remember that the algorithm must be in-place, without using
any additional storage for the numbers to be sorted. Give an analysis of its time
complexity. The more efficient your algorithm is, the more points you will get for
this problem.

10. Below is a variant of the bubble sort algorithm in pseudocode.

Algorithm Bubble Sort (A, n);
begin

for i := 1 to n− 1 do
for j := 1 to n− i do

if A[j] > A[j + 1] then
swap(A[j], A[j + 1]);

end for
end for

end

Draw a decision tree of the algorithm for the case of A[1..3], i.e., n = 3. In the
decision tree, you must indicate (1) which two elements of the original input array
are compared in each internal node and (2) the sorting result in each leaf. Please
use X1, X2, X3 (not A[1], A[2], A[3]) to refer to the elements (in this order) of the
original input array.

3



Appendix

• The solution of the recurrence relation T (n) = aT (n/b) + cnk, where a and b are
integer constants, a ≥ 1, b ≥ 2, and c and k are positive constants, is as follows.

T (n) =


O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

• Below is an algorithm for determining whether a solution to the Knapsack Problem
exists. It does not attempt to maximize the number of items in the solution.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• Below is an alternative algorithm for partition in the Quicksort algorithm:

Partition (X,Left ,Right);
begin

pivot := X[left ];
i := Left ;
for j := Left + 1 to Right do

if X[j] < pivot then i := i + 1;
swap(X[i], X[j]);

Middle := i;
swap(X[Left ], X[Middle])

end

4


