
Algorithms [January 12, 2021] Fall 2020

Final

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. The set of all (non-empty) full binary trees that store non-negative integer key
values may be defined inductively as follows.

(a) node(k,⊥,⊥, 0), for any non-negative integer k, is a full binary tree of height
0.

(b) If tl and tr are full binary trees of height h, then node(k, tl, tr, h + 1), for any
non-negative integer k, is a full binary tree of height h + 1.

Please give a similar inductive definition for the set of all (non-empty) complete bi-
nary trees that store non-negative integer key values. For instance, node(6,⊥,⊥, 0)
is a single-node complete binary tree storing key value 6 and node(8, node(6,⊥,⊥, 0),
⊥, 1) is a complete binary tree with two nodes — the root and its left child, storing
key values 8 and 6 repsectively. Pictorially, they may be depicted as below.

6

⊥⊥

8

⊥6

⊥⊥

2. Please give a binary de Bruijn sequence of 24 bits, which is a cyclic sequence of 16
bits a1a2 · · · a16 such that each binary sequence of size 4 appears somewhere in the
sequence. Explain how you can systematically produce the de Bruijn sequence.

3. Design an algorithm that, given a weighted directed graph, detects the existence of a
negative-weight cycle (the sum of the weights of its edges is negative). Please present
your algorithm in adequate pseudocode and make assumptions wherever necessary.
Explain why your algorithm is correct and give an analysis of its time complexity.
The more efficient your algorithm is, the more points you will be credited for this
problem. (Hint: adapt Floyd’s algorithm for all-pair shortest paths.)

4. Prove that, if the costs of all edges in a connected weighted undirected graph are
distinct, then the graph has a unique minimum-cost spanning tree.

1



5. Let G = (V,E) be a connected weighted undirected graph and T be a minimum-
cost spanning tree (MCST) of G. Suppose that the cost of one edge {u, v} in G is
updated ; {u, v} may or may not belong to T . Prove that T is still an MCST of G
under any of the following two conditions:

(a) {u, v} belongs to T and its cost decreases or

(b) {u, v} does not belong to T and its cost increases.

You may assume that the costs of all edges are distinct before and after the cost
update to {u, v}.

6. Below is the algorithm discussed in class for determining the strongly connected
components (SCCs) of a directed graph. The algorithm is based on depth-first
search (DFS). To explore the neighbors of a particular node v on which the SCC
procedure is invoked, the algorithm visits each neighbor w of v via some edge (v, w).
In terms of the DFS tree (which is implicit in the algorithm), the edge (v, w) may
be classified as a tree edge, forward edge, back edge, or cross edge. How does the
algorithm handle these different cases? Please explain by referring to the code and
pointing out the actions taken for each case.

Algorithm Strongly Connected Components(G, n);
begin

for every vertex v of G do
v.DFS Number := 0;
v.component := 0;

Current Component := 0; DFS N := n;
while v.DFS Number = 0 for some v do

SCC(v)
end

procedure SCC(v);
begin

v.DFS Number := DFS N ;
DFS N := DFS N − 1;
insert v into Stack;
v.high := v.DFS Number;
for all edges (v, w) do

if w.DFS Number = 0 then
SCC(w);
v.high := max(v.high, w.high)

else if w.DFS Number > v.DFS Number
and w.component = 0 then

v.high := max(v.high, w.DFS Number)
if v.high = v.DFS Number then

Current Component := Current Component + 1;
repeat

2



remove x from the top of Stack;
x.component := Current Component

until x = v
end

7. Consider designing by dynamic programming an algorithm that, given as input a
sequence of distinct numbers, determines the length of a longest increasing subse-
quence in the input sequence. For instance, if the input sequence is 1, 3, 11, 5, 12, 14, 7,
9, 15, then a longest subsequence is 1, 3, 5, 7, 9, 15 whose length is 6 (another longest
subsequence is 1, 3, 11, 12, 14, 15).

(a) Formulate the solution using recurrence relations.

(b) Present the algorithm in suitable pseudocode, based on the previous recursive
formulation. What is the time complexity of your algorithm?

8. The bipartite matching problem (the maximum-cardinality matching problem for
bipartite graphs) can be reduced to the network flow problem, which in turn can be
reduced to linear programming. Please illustrate the reductions, using the graph
below as input to the bipartite matching problem.

u1

u2

u3

v1

v2

v3

(a) Draw the network resulted from the conversion of the bipartite graph and show
a maximum flow of the resulting network.

(b) Give the linear-programming objective function and constraints for the net-
work.

9. In the proof (discussed in class) of the NP-hardness of the clique problem by re-
duction from the SAT problem, we convert an arbitrary boolean expression in CNF
(input of the SAT problem) to an input graph to the clique problem.

(a) Please illustrate the conversion by drawing the graph that will be obtained
from the following boolean expression:

(x + z) · (x + y + z) · (x + y + z).

(b) The original boolean expression is satisfiable. As a demonstration of how
the reduction works, please use the resulting graph to argue that the original
boolean expression is indeed satisfiable.

10. Solve one of the following two problems. (Note: if you try to solve both problems,
I will randomly pick one of them to grade.)

3



(a) The subgraph isomorphism problem is as follows.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), does G1 have a
subgraph that is isomorphic to G2? (Two graphs are isomorphic if
there exists a one-one correspondence between the two sets of vertices
of the two graphs that preserves adjacency, i.e., if there is an edge
between two vertices of the first graph, then there is also an edge
between the two corresponding vertices in the second graph, and vice
versa.)

Prove that the subgraph isomorphism problem is NP-complete.

(b) The traveling salesman problem is as follows.

Given a weighted complete graph G = (V,E) (representing a set of
cities and the distances between all pairs of cities) and a number D,
does there exist a circuit (traveling-salesman tour) that includes all
the vertices (cities) and has a total length ≤ D?

Prove that the traveling salesman problem is NP-complete.

Appendix

• Below is a theorem useful for discovering an MCST of a connected weighted undi-
rected graph G = (V,E):

Let V1 and V2 be a partition of V and E(V1, V2) be the set of edges connecting
nodes in V1 to nodes in V2. An edge with the minimum weight in E(V1, V2) must
be in an MCST of the given G.

• The Hamiltonian cycle problem: given an undirected graph G, does G have a
Hamiltonian cycle? (A Hamiltonian cycle in a graph is a cycle that contains each
vertex, except the starting vertex of the cycle, exactly once.)

The Hamiltonian cycle problem is NP-complete.

4


