
Algorithms [May 8, 2003] Spring 2003

Suggested Solutions to Midterm Problems

Problems

1. Given any binary tree T , let lT denote the number of its leaves and mT the number of its
internal nodes.

(a) Prove by induction that, if every internal node of T has two children, then lT −mT =
1. (8 points)
Solution. The proof is by strong induction on the number nT of nodes of an arbitrary

binary tree T where every internal node has two children.

Base case (nT = 1): lT = 1 and mT = 0. Apparently, lT −mT = 1.

Inductive step (nT > 1): Let T1 and T2 denote respectively the left and the right
subtrees of T ’s root (which is an internal node of T and hence has two children). It
is clear that every internal node of T1 and T2 has two children. From the induction
hypothesis, lT1 −mT1 = 1 and lT2 −mT2 = 1. The leaves of T1 and T2 are also leaves
of T and the internal nodes of T1 and T2 are also internal nodes of T ; therefore,
lT1 + lT2 = lT and mT1 + mT2 = mT − 1 (subtracting one for the root). It follows
that lT −mT = (lT1 + lT2)− (mT1 + mT2 + 1) = (lT1 −mT1) + (lT2 −mT2)− 1 = 1. 2

(b) Use the preceding result to show that, if T is a complete binary tree, then either
lT −mT = 1 or lT −mT = 0. (2 points)
Solution. In a complete binary tree T , every internal node except the last one

(counting from top to bottom and left to right) has two children. If the last internal
node also has two children, then from Part (a) we have lT −mT = 1. Otherwise, add
a second child to the last internal node of T to obtain another complete binary tree T ′

such that every internal node of T ′ has two children; it is clear that lT ′ = lT + 1 and
mT ′ = mT . From Part (a), lT ′ −mT ′ = 1 and hence lT −mT = (lT ′ − 1)−mT ′ = 0.
2

2. Let a1, a2, · · · , an be positive real numbers such that a1a2 · · · an = 1. Prove by induction
that (1+ a1)(1+ a2) · · · (1+ an) ≥ 2n. (Hint: In the inductive step, try introducing a new
variable that replaces two chosen numbers from the sequence.)

Solution. The proof is by induction on n.

Base case (n = 1): a1 = 1. So, (1 + a1) = 2 ≥ 21.

Inductive step (n > 1): In any sequence a1, a2, · · · , an (n > 1) of positive real numbers
where a1a2 · · · an = 1, there must exist two numbers ai and aj such that ai ≥ 1 and aj ≤ 1.
Without loss of generality, we assume that the two numbers are an−1 and an (this can

1



always be achieved by swapping numbers in the sequence). As (1− an−1)(1− an) ≤ 0, it
follows that an−1 + an ≥ 1 + an−1an. Let a′n−1 be the number equal to an−1an (which is
also a positive real number) so that a1a2 · · · an−2a

′
n−1 = a1a2 · · · an−2an−1an = 1.

(1 + a1)(1 + a2) · · · (1 + an−2)(1 + an−1)(1 + an) = (1 + a1)(1 + a2) · · · (1 + an−2)(1 +
an−1 + an + an−1an) ≥ (1 + a1)(1 + a2) · · · (1 + an−2)((1 + an−1an) + (1 + an−1an)) =
2(1 + a1)(1 + a2) · · · (1 + an−2)(1 + an−1an) = 2(1 + a1)(1 + a2) · · · (1 + an−2)(1 + a′n−1),
which from the induction hypothesis ≥ 2× 2n−1 = 2n. 2

3. For each pair f ,g of functions, indicate whether f(n) = O(g(n)) and/or f(n) = Ω(g(n)).
(Stirling’s approximation: n! =

√
2πn

(
n
e

)n (1 + O(1/n)).)

f(n) g(n)
2n + log n n + (log n)2

(log n)log n n

3n 3
n
2

log(n!) log(nn)

Solution. (Tsai, Ming-Hsien)

(a)

limn→∞ 2n+log n
n+(log n)2

= limn→∞
2+ 1

n

1+2 1
n

log n

= limn→∞ 2n+1
n+2 log n

= limn→∞ 2
1+ 2

n

= 2
Therefore, f(n) = O(g(n)) and f(n) = Ω(g(n)).

(b) f(n) = (log n)log n = 10log n log log n; g(n) = n = 10log n.

Therefore, f(n) ≥ g(n) and hence f(n) = Ω(g(n)).

(c) f(n) = 3n = 3
n
2 · 3n

2 ≥ 3
n
2 = g(n).

Therefore, f(n) = Ω(g(n)).

(d)

limn→∞ log n!
log nn = limn→∞

log (
√

2πn)(n
e
)n(1+O(1/n))

n log n

= limn→∞
log (

√
2π)+ 1

2
log n+n log n−n log e

n log n

= limn→∞
1
2n

+log n+1−1

log n+1

= limn→∞ 1+2n log n
2n log n+2n

= limn→∞ 2 log n+2
2 log n+2+2

= limn→∞
2
n
2
n

= 1
Therefore, f(n) = O(g(n)) and f(n) = Ω(g(n)).

2

2



4. Modify the following code for determining the sum of the maximum consecutive subse-
quence so that it also records the start and end indices of the subsequence.

Algorithm Max Consec Subseq (X,n);
begin

Global Max := 0;
Suffix Max := 0;
for i := 1 to n do

if x[i] + Suffix Max > Global Max then

Suffix Max := Suffix Max + x[i];
Global Max := Suffix Max

else if x[i] + Suffix Max > 0 then

Suffix Max := Suffix Max + x[i]
else Suffix Max := 0

end

Solution. (Tsai, Ming-Hsien)

Algorithm Max_Conseq_Subseq(X, n);

begin

Global_Max := 0;

Suffix_Max := 0;

Suffix_Start_Index := 0;

Global_Start_Index := 0;

Global_End_Index := 0;

for i := 1 to n do

if x[i] + Suffix_Max > Global_Max then

Suffix_Max := Suffix_Max + x[i];

Global_Max := Suffix_Max;

Global_Start_Index := Suffix_Start_Index;

Global_End_Index := i;

else if x[i] + Suffix_Max > 0 then

Suffix_Max := Suffix_Max + x[i];

else

Suffix_Max := 0

Suffix_Start_Index := i + 1;

end

2

5. In a history exam problem, the students are asked to put several historical events into
chronological order. Students who order all events correctly will receive full credit. Partial

3



credits are awarded according to the longest (not necessarily contiguous) subsequence
of events that are in the correct order relative to each other. Your task is to design
an algorithm that determines the length of such a subsequence for the answer given by
a student. Assume you already have a procedure that can find the longest increasing
subsequence of a given sequence of distinct integers. Utilize the assumed procedure to
obtain the needed algorithm.

Solution. Assume that no two historical events happened “at the same time,” i.e., every
two events can be given a strict chronological order.

Step 1: Assign to each event e an integer ne according to the correct chronological order
of the historical events, i.e., ne1 < ne2 if event e1 happened before e2.

Step 2: Feed the sequence of integers corresponding to a student’s answer into the known
procedure for determining the longest increasing subsequence.

Step 3: Compute and return the length of the subsequence obtained in Step 2. 2

6. Show all intermediate and the final AVL trees formed by inserting the numbers 4, 3, 0, 2,
1, 8, 5, 7, 9, and 6 (in this order). Please use the following ordering convention: the key
of an internal node is larger than that of its left child and smaller than that of its right
child. If a rotation is performed during an insertion, please also show the tree before the
rotation. (15 points)

Solution. (Chen, Po-An)

6
4

5

9

8

7

2
0

1

3

do
ub

le
 r

ot
at

io
n 

at
 5

4
8

5

2
0

1

3

4
8

5

2
0

1

3

4
8

5

2
0

1

3

6

7
9

9
7

7

in
se

rt
 7

in
se

rt
 9

in
se

rt
 6

4
8

5

2
0

1

3

8

4

2
0

1

3

8

4

2
0

1

3

5

in
se

rt
 8

in
se

rt
 5

do
ub

le
 r

ot
at

io
n 

at
 4

4

2
0

1

3

4

2

0

3

4

2

0

3

1

in
se

rt
 2

in
se

rt
 1

d
ou

b
le

 r
ot

at
io

n 
at

 0

0
4

3

3

4

3

4
4

0

in
se

rt
 4

in
se

rt
 3

in
se

rt
 0

si
ng

le
 r

ot
at

io
n 

at
 4

4



2

7. Apply the quicksort algorithm to the following array. Show the contents of the array after
each partition operation. Please briefly describe your partition algorithm if it is different
from the one we discussed in class.

7 1 5 11 2 10 9 3 6 12 4 8

Solution. (Chen, Po-An)

7 1 5 11 2 10 9 3 6 12 4 8

6

6

6

6

6

6

6

7

7

7

7

7

7

7

6 7

9

9

9

9

9

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

9

9

9

12

12

12

12

12

12

12

12

11

11

11

11

11

11

11

11

2

5

5

5

5

5

5

5

4

4

4

4

4

4

4

4

5

3

3

3

3

3

3

3

1

1

1 2

2

2

2

2

2

2

3

1

1

1

1

1

2

8. We have discussed in class how to rearrange an array into a (max) heap using a bottom-up
approach. Please present the approach in pseudocode. (15 points)

Solution.

Algorithm Build_Heap(A,n);

begin

for i := n DIV 2 downto 1 do

parent := i;

child1 := 2*parent;

child2 := 2*parent + 1;

if child2 > n then child2 := child1;

if A[child1]>A[child2] then maxchild := child1

else maxchild := child2;

while maxchild<=n and A[parent]<A[maxchild] do

swap(A[parent],A[maxchild]);

parent := maxchild;

child1 := 2*parent;

child2 := 2*parent + 1;

5



if child2 > n then child2 := child1;

if A[child1]>A[child2] then maxchild := child1

else maxchild := child2;

end;

end;

end;

2

9. Draw a Huffman tree for a text with the following frequency distribution: A : 12, B : 7,
C : 3, D : 5, E : 15, F : 4, G : 1, and H : 2.

Solution. (Chen, Po-An)

F
(4)

D
(5)

9
A

(12)

21

E
(15)

13

28

49

B
(7)

6

C
(3)

3

H
(2)

G
(1)

2

6


