
Algorithms [April 26, 2007] Spring 2007

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise

marked.

Problems

1. Let a1, a2, · · · , an be positive real numbers such that a1a2 · · · an = 1. Prove by

induction that (1 + a1)(1 + a2) · · · (1 + an) ≥ 2n. (Hint: In the inductive step, try

introducing a new variable that replaces two chosen numbers from the sequence.)

2. Consider a round-robin tournament among n players. In the tournament, each

player plays once against all other n − 1 players. There are no draws, i.e., for a

match between A and B, the result is either A beat B or B beat A. Prove by

induction that, after a round-robin tournament, it is always possible to arrange the

n players in an order p1, p2, · · · , pn such that p1 beat p2, p2 beat p3, · · ·, and pn−1

beat pn. (Note: the “beat” relation, unlike “≥”, is not transitive.)

3. Below is an algorithm for solving a variant of the Towers of Hanoi puzzle with an

additional fourth peg D; Towers Hanoi is an algorithm for the original puzzle.

Algorithm Four_Towers_Hanoi(A,B,C,D,n);

begin

if n<=2 then

Towers_Hanoi(A,B,C,n);

else

Four_Towers_Hanoi(A,D,B,C,n-2);

Towers_Hanoi(A,B,C,2);

Four_Towers_Hanoi(D,B,C,A,n-2);

end;

Consider alternatives of first moving n−k disks (for some value of k, not necessarily

2) to D. Let T (n) denote the number of moves needed for n disks. Write a

recurrence relation for T (n) with k as a parameter. Can you tell which value of

1



k will be the best, i.e., resulting in a smaller asymptotic upper bound for T (n)?

Why?

4. In the implementation of an AVL tree, a rebalancing process using rotation opera-

tions may be needed after an insert or delete. Design the first part of a procedure

for insert, up to the point when the node where a rotation is needed (i,e., the crit-

ical node) is determined (when rebalancing is needed). You are not required to

design the part for rotation. Please present your procedure in an adequate pseudo

code and make assumptions wherever necessary.

5. Show all intermediate and the final AVL trees formed by inserting the numbers 4, 5,

6, 1, 2, and 3 (in this order) into an empty tree. Please use the following ordering

convention: the key of an internal node is larger than that of its left child and

smaller than that of its right child. If a rotation is performed during an insertion,

please also show the tree before the rotation.

6. Design an efficient algorithm that, given an array A of n integers and an integer

x, determine whether A contains two integers whose sum is exactly x. Please

present your algorithm in an adequate pseudo code and make assumptions wherever

necessary. Give an analysis of its time complexity. The more efficient your algorithm

is, the more points you will be credited for this problem.

7. The Knapsack Problem is defined as follows: Given a set S of n items, where the

ith item has an integer size S[i], and an integer K, find a subset of the items whose

sizes sum to exactly K or determine that no such subset exists.

Below is an algorithm for determining whether a solution to the problem exists.

Algorithm Knapsack (S, K);

begin

P [0, 0].exist := true;

for k := 1 to K do

P [0, k].exist := false;

for i := 1 to n do

for k := 0 to K do

P [i, k].exist := false;

if P [i− 1, k].exist then

P [i, k].exist := true;

P [i, k].belong := false

else if k − S[i] ≥ 0 then

2



if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;

P [i, k].belong := true

end

(a) Design an algorithm to recover the solution recorded in the array P . (5 points)

(b) Modify the given algorithm to solve a variation of the knapsack problem where

each item has an unlimited supply. (10 points)

8. Let x1, x2, · · · , xn be a sequence of real numbers (not necessarily positive). Design

an O(n) algorithm to find the subsequence xi, xi+1, · · · , xj (of consecutive elements)

such that the product of the numbers in it is maximum over all consecutive subse-

quences. The product of the empty subsequence is defined to be 1. Please present

your algorithm in an adequate pseudo code and make assumptions wherever neces-

sary.

9. Consider rearranging the following array into a max heap.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8 2 3 5 12 14 7 1 6 4 10 15 13 9 11

(a) Design a systematic procedure for performing this task. Please present your

procedure in an adequate pseudo code and make assumptions wherever neces-

sary. (10 points)

(b) The procedure above most likely will consist of a number of rounds. Given the

above input, please show the result (i.e., the contents of the array) after each

round until it becomes a heap. (5 points)

3


