
Algorithms [Compiled on November 29, 2021] Fall 2021

Suggested Solutions to Midterm Problems

1. Construct a Gray code of length dlog2 14e (= 4) for 14 objects. Please explain how the
Gray code is constructed systematically from Gray codes of smaller lengths.

Solution. Let (c1, c2, . . . , cn)R denote the sequence cn, cn−1, . . . , c1.

14 = 2 × 7; 7 = 8 − 1 (we are using reversed induction here); 8 = 2 × 4; 4 = 2 × 2. So,
we will start with building a code for 2 objects and then codes for 4, 8, 7, and finally 14
objects.

Code of length 1 for 2 objects: 0, 1.
Code #1 of length 2 for 2 objects: 00, 01.
Code #2 of length 2 for 2 objects: 10, 11.
Code of length 2 for 4 objects: 00, 01, (10, 11)R.
Code of length 2 for 4 objects: 00, 01, 11, 10.
Code #1 of length 3 for 4 objects: 000, 001, 011, 010.
Code #2 of length 3 for 4 objects: 100, 101, 111, 110.
Code of length 3 for 8 objects: 000, 001, 011, 010, (100, 101, 111, 110)R.
Code of length 3 for 8 objects: 000, 001, 011, 010, 110, 111, 101, 100.
Code of length 3 for 7 objects: 000, 001, 011, 010, 110, 111, 101. (open)
Code #1 of length 4 for 7 objects: 0000, 0001, 0011, 0010, 0110, 0111, 0101. (open)
Code #2 of length 4 for 7 objects: 1000, 1001, 1011, 1010, 1110, 1111, 1101. (open)
Code of length 4 for 14 objects: 0000, 0001, 0011, 0010, 0110, 0111, 0101,
(1000, 1001, 1011, 1010, 1110, 1111, 1101)R.
Code of length 4 for 14 objects: 0000, 0001, 0011, 0010, 0110, 0111, 0101,
1101, 1111, 1110, 1010, 1011, 1001, 1000. 2

2. The lattice points in the plane are the points with integer coordinates. Let T be a triangle
such that all of its three vertices are lattice points; see the figure below. Let p be the
number of lattice points that are on the boundary of T (including its vertices), and let q
be the number of lattice points that are inside T . Prove [by induction] that the area of T
is p

2 + q − 1.
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Solution. The proof is by induction on p + q.

Base case (p + q = 3): In this case, p = 3 and q = 0. A triangle satisfying this condition
must have a side of unit length and the height with that side as the base must be one;
otherwise, the triangle would either have more than three lattice points on the boundary
or have at least one lattice point inside the triangle. Therefore, its area is 1

2(1× 1) = 1
2 =

3
2 + 0− 1 = p

2 + q − 1.
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Inductive step (p + q > 3): A triangle with p + q > 3 either (a) has at least one lattice
point on the boundary that is not a vertex or (b) has at least one lattice point inside the
triangle.

Case (a): Suppose the triangle has p1, p2, and p3 lattice points on the three sides re-
spectively and q (q ≥ 0) lattice points inside; so, p1 + p2 + p3 − 3 = p. Without loss of
generality, we assume that p3 > 2 such that one of the p3 lattice points is not a vertex.
Connect the non-vertex lattice point to the opposite vertex with a line segment, to divide
the triangle into two that share the line segment as a side. Suppose the new shared side
has p4 lattice points and the side with p3 lattice points is divided into two smaller sides,
each with p′3 and p′′3 lattice points respectively. Clearly, p′3 + p′′3 − 1 = p3, as the two
smaller sides share a vertex. Now, one of the smaller triangles has p1, p

′
3, and p4 lattice

points on the three sides and the other has p2, p
′′
3, and p4 lattice points on the three sides.

Suppose they respectively have q′ (q′ ≥ 0) and q′′ (q′′ ≥ 0) lattice points inside. Clearly,
p4 − 2 + q′ + q′′ = q. From the induction hypothesis, the area of the first smaller triangle

is
p1+p′3+p4−3

2 + q′ − 1 and that of the second smaller triangle is
p2+p′′3+p4−3

2 + q′′ − 1. The

area of the original triangle, therefore, is (
p1+p′3+p4−3

2 + q′ − 1) + (
p2+p′′3+p4−3

2 + q′′ − 1),

which equals
p1+p2+p′3+p′′3

2 + p4 − 3 + q′ − 1 + q′′ − 1 = p1+p2+p3+1
2 + p4 + q′ + q′′ − 5 =

p1+p2+p3−3
2 + 2 + p4 + q′ + q′′ − 5 = p

2 + 2 + (p4 − 2 + q′ + q′′) + 2− 5 = p
2 + q − 1.

Case (b): Suppose the triangle has p1, p2, and p3 lattice points on the three sides respec-
tively and q (q > 0) lattice points inside; so, p1 + p2 + p3 − 3 = p. Select a lattice point
that is inside the triangle and connect it to the three vertices with three line segments, to
divide the triangle into three, every two of which share one newly drawn line segment as
a side. The rest of the proof is similar to that of Case (a). 2

3. Consider labeling the nodes of a full binary tree level by level, from top to bottom and left
to right, with the numbers 1 through n, where n is the number of nodes in the tree. Prove
by induction that, for an internal node labeled i, its left and right children are labeled 2i
and 2i + 1 respectively.

Solution. Let us count the levels of a full binary tree from 0, the root being on Level 0,
its children on Level 1, etc.

We claim and prove by induction that there are 2l nodes on Level l and the labeling as
stated in the problem gives the 2l nodes numbers 2l through 2l+1−1, for every l such that
2l+1 − 1 ≤ n. This implies that, for an internal node labeled i = 2l + j, 0 ≤ j ≤ 2l − 1, it
is on Level l and has j siblings to the left, which totally have 2j children on Level l + 1
labeled 2l+1 through 2l+1 + 2j − 1. So, the two children of the node labeled i are labeled
(2l+1 + 2j − 1) + 1 = 2(2l + j) = 2i and (2l+1 + 2j − 1) + 2 = 2(2l + j) + 1 = 2i + 1
respectively, which is what the problem statement requires to be proved. Below is a proof
of the claim by induction on the level l.

Base case (l = 0): the root is the only node on Level 0 and is labeled 1 = 20.

Inductive step (l > 0 s.t. 2l+1 − 1 ≤ n): The nodes on Level l are children of those on
Level l − 1. From the induction hypothesis, there are 2l−1 nodes on Level l − 1. As each
of the 2l−1 nodes has two children, there are 2l nodes on Level l. Also, from the induction
hypothesis, the 2l−1 nodes on Level l − 1 are labeled 2l−1 through 2l − 1. Therefore, the
2l nodes on Level l should be labeled (2l − 1) + 1 through (2l − 1) + 2l, i.e., 2l through
2l+1 − 1. 2

4. Consider the problem of merging two skylines, which is a useful building block for com-
puting the skyline of a number of buildings. A skyline is an alternating sequence of x
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coordinates and y coordinates (heights), ending with an x coordinate (as discussed in
class). The sequence of coordinates may be conveniently stored in an array, say A, with
A[0] storing the first x coordinate, A[1] the first y coordinate, A[2] the second x coordinate,
etc.

Design a linear-time procedure that prints out the resulting skyline from merging two given
skylines. Please present the procedure in suitable pseudocode. The procedure should be
named merge_skylines and invoked by merge_skylines(A,m,B,n), where A and B are
the two input skylines and A[m] and B[n] store the final x coordinate of skyline A and
that of skyline B respectively. Does your procedure really run in O(m + n) time? Please
explain.

Solution.

merge_skylines(A,m,B,n)

// assume m,n >= 2.

begin

if A[0] < B[0] then

print A[0], A[1];

merge_a(A[1], 0, A[2..m], m-2, B, n)

else

if A[0] > B[0] then

print B[0], B[1];

merge_b(0, B[1], A, m, B[2..n], n-2)

else // A[0] = B[0]

if A[1] < B[1] then

print B[0], B[1];

merge_b(A[1], B[1], A[2..m], m-2, B[2..n], n-2)

else // A[1] > B[1] or A[1] = B[1] (given A[0] = B[0])

print A[0], A[1];

merge_a(A[1], B[1], A[2..m], m-2, B[2..n], n-2)

end if

end if

end if

end

merge_a(ya, yb, A, m, B, n);

// ya, yb are the previous y coordinates of A and B, respectively.

// ya > yb.

begin

if m = 0 and n = 0 then

if A[0] < B[0] then

print A[0], yb, B[0]

else

print A[0]

end if;

return

end if;

if m = 0 then

if A[0] < B[0] then
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print A[0], yb, each entry of B

else

if ya >= B[1] then

merge_a(ya, B[1], A, m, B[2..n], n-2)

else

print B[0], B[1];

merge_b(ya, B[1], A, m, B[2..n], n-2)

end if;

return

end if;

if n = 0 then

if A[0] < B[0] then

if A[1] < yb then

print A[0], yb;

merge_b(A[1], yb, A[2..m], m-2, B, n)

else

print A[0], A[1];

merge_a(A[1], yb, A[2..m], m-2, B, n)

end if

else // A[0] >= B[0]

print each entry of A

end if;

return

end if;

// m,n >= 2

if A[0] < B[0] then

if A[1] > yb then

print A[0], A[1];

merge_a(A[1], yb, A[2..m], m-2, B, n)

else

print A[0], yb;

merge_b(A[1], yb, A[2..m], m-2, B, n)

end if

else

if A[0] > B[0] then

if B[1] > ya then

print B[0], B[1];

merge_b(ya, B[1], A, m, B[2..n], n-2)

else

merge_a(ya, B[1], A, m, B[2..n], n-2)

end if

else // A[0] = B[0]

if A[1] < B[1] then

if B[1] != ya then

print B[0], B[1];

end if;

merge_b(A[1], B[1], A[2..m], m-2, B[2..n], n-2)

else // A[1] > B[1] or A[1] = B[1] (given A[0] = B[0])

print A[0], A[1];
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merge_a(A[1], B[1], A[2..m], m-2, B[2..n], n-2)

end if

end if

end if

end

merge_b(ya, yb, A, m, B, n);

// ya, yb are the previous y coordinates of A and B, respectively.

// ya < yb.

// analogous to merge_a.

2

5. Below is the pseudocode of the binary search algorithm we discussed in class. Would the
code still be correct if we change the assignment “Middle := dLeft+Right

2 e” to “Middle :=

bLeft+Right
2 c” for Middle to take instead the largest integer less than or equal to Left+Right

2 ?
Please justify your answer.

function Find (z,Left ,Right) : integer ;
begin

if Left = Right then
if X[Left ] = z then Find := Left
else Find := 0

else

Middle := dLeft+Right
2 e;

if z < X[Middle] then
Find := Find(z,Left ,Middle − 1)

else
Find := Find(z,Middle,Right)

end

Algorithm Binary Search (X,n, z);
begin

Position := Find(z, 1, n);
end

Solution. The code would be incorrect, if just that change is made. Consider X[1..2] =
[7, 9], an array with two numbers 7 and 9. Suppose we invoke Binary Search(X, 2, 6)
to find out whether 6 is in X. The call in turns invokes Find(6, 1, 2), whose execution
will set Middle to bLeft+Right

2 c = b1+2
2 c = 1. Since z = 6 < 7 = X[1] = X[Middle], the

execution will invoke Find(z,Left ,Middle − 1), i.e., Find(6, 1, 0), which will result in an
access to X[0], an erroreous behavior. 2

6. Given the array below as input [to the Mergesort algorithm], what are the contents of
array TEMP after the merge part is executed for the first time and what are the contents
of TEMP when the algorithm terminates? Assume that each entry of TEMP has been
initialized to 0 when the algorithm starts.

1 2 3 4 5 6 7 8 9 10 11 12

7 9 2 6 5 10 8 3 1 12 4 11
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Solution. The contents of array TEMP after the merge part is executed for the first time:

1 2 3 4 5 6 7 8 9 10 11 12

2 7 0 0 0 0 0 0 0 0 0 0

The contents of array TEMP when the algorithm terminates:

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 0 0 2

7. Consider rearranging the following array into a max heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 2 8 5 1 14 7 6 3 11 10 13 15 12 9

Please show the result (i.e., the contents of the array) after a new element is added to the
current collection of heaps (at the bottom) until the entire array has become a heap.

Solution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 2 8 5 1 14 7 6 3 11 10 13 15 12 9

4 2 8 5 1 14 12 6 3 11 10 13 15 7 9

4 2 8 5 1 15 12 6 3 11 10 13 14 7 9

4 2 8 5 11 15 12 6 3 1 10 13 14 7 9

4 2 8 6 11 15 12 5 3 1 10 13 14 7 9

4 2 15 6 11 14 12 5 3 1 10 13 8 7 9

4 11 15 6 10 14 12 5 3 1 2 13 8 7 9

15 11 14 6 10 13 12 5 3 1 2 4 8 7 9

2

8. Draw a decision tree of the Heapsort algorithm (in increasing order) for the case of A[1..3],
i.e., n = 3. In the decision tree, you must indicate (1) which two elements of the original
input array are compared in each internal node and (2) the sorting result in each leaf.
Please use X1, X2, X3 (not A[1], A[2], A[3]) to refer to the elements (in this order) of the
original input array A.

Solution.

X2 : X3

X1 : X2

X3 : X2

[X2X3X1][X3X2X1]

X3 : X1

[X1X3X2][X3X1X2]

[X2X1X3]
[X3X1X2]

[X1X2X3]
[X3X2X1]

X1 : X3

X3 : X2

[X2X3X1]N/A

X1 : X2

[X2X1X3][X1X2X3]

[X3X2X1]
[X1X2X3]

[X1X2X3]
[X3X2X1]

< ≥

Note: two or more of X1, X2, and X3 may be equal. 2

9. The next table is a precomputed table (for B = b1b2 · · · bm) that plays a critical role in the
KMP algorithm. Under what condition regarding b1b2 · · · bi, 2 ≤ i ≤ m, will next [i] get
a 0 in the preprocessing? And under what condition can it be safely set to −1 (without
missing a potential match when searching for B in another input string)?
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Solution. The value of next [i] is determined by the length of the longest prefix of
b1b2 · · · bi−1 that is also a suffix of b1b2 · · · bi−1. When no such prefix exists, next [i] gets a
0.

During a search for string B in string A using KMP, when bj is compared against ai
and the comparison fails, bnext [j]+1 is tried next against ai. When next [j] = 0, it is b1
that is compared with ai. If the comparison fails, then b1 will be compared against ai+1,
according to the case for next [j]+1 = 0, i.e., next [j] = −1. When b1 = bj , the comparison
between b1 and ai is doomed to fail (since b1 = bj 6= ai) and the comparison could have
been saved. To achieve the saving, we can set next [j] to −1 (instead of 0) when bj happens
to be equal to b1. 2

10. Given two strings A = bbaaba and B = ababa, what is the result of the minimal cost
matrix C[0..6, 0..5], according to the algorithm discussed in class for changing A character
by character into B? Aside from giving the cost matrix, please show the details of how
the entry C[4, 3] is computed from the values of C[3, 2], C[3, 3], and C[4, 2].

Solution.

a b a b a

0 1 2 3 4 5

b 1 1 1 2 3 4

b 2 2 1 2 2 3

a 3 2 2 1 2 2

a 4 3 3 2 2 2

b 5 4 3 3 2 3

a 6 5 4 3 3 2

C[4, 3] = min


C[3, 3] + 1 = 1 + 1 = 2 (deleting A4),
C[4, 2] + 1 = 3 + 1 = 4 (inserting B3),
C[3, 2] = 2 (A4 = B3)

 = 2

2

Appendix

• The Mergesort algorithm:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d 1

2
(Left+Right)e;

M Sort(Left,Middle− 1);
M Sort(Middle,Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
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if X[i] ≤ X[j] then
TEMP [k] := X[i]; i := i+ 1

else TEMP [k] := X[j]; j := j + 1;
if j > Right then

for t := 0 to Middle− 1− i do
X[Right− t] := X[Middle− 1− t]

for t := 0 to k − 1 do
X[Left+ t] := TEMP [1 + t]

end

• The KMP algorithm (assuming next):

Algorithm String Match (A,n,B,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i+ 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i+ 1;
if j = m+ 1 then Start := i−m

end

• The algorithm for computing the next table in the KMP algorithm:

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end
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