
Algorithms [January 7, 2020] Fall 2019

Final

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Below is the Mergesort algorithm in pseudocode:

Algorithm Mergesort(X,n);
begin M Sort(1, n) end

procedure M Sort(Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d 12 (Left+Right)e;
M Sort(Left,Middle− 1);
M Sort(Middle,Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i+ 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left+ t] := TEMP [1 + t]
end

Given the array below as input, what are the contents of array TEMP after the
merge part is executed for the first time and what are the contents of TEMP when
the algorithm terminates? Assume that TEMP and X have the same number of
entries and each entry of TEMP has been initialized to 0 when the algorithm starts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

15 12 13 3 8 9 14 16 7 1 2 4 11 5 10 6

2. Given as input a connected undirected graph G, a spanning tree T of G, and a vertex
v, design an algorithm to determine whether T is a valid DFS tree of G rooted at v.
In other words, determine whether T can be the output of DFS under some order
of the edges starting with v. Please present your algorithm in adequate pseudocode

1

and make assumptions wherever necessary. Explain why the algorithm is correct
and give an analysis of its time complexity. The more efficient your algorithm is,
the more points you get for this problem.

3. Please explain, using an example, why Dijkstra’s algorithm does not work for graphs
that contain edges with a negative weight.

4. Let G = (V,E) be a connected weighted undirected graph and T be a minimum-
cost spanning tree (MCST) of G. Suppose that the cost of one edge {u, v} in G
is decreased ; {u, v} may or may not belong to T . Design an algorithm either to
find a new MCST or to determine that T is still an MCST. Explain why your
algorithm is correct and give an analysis of its time complexity. The more efficient
your algorithm is, the more points you will be credited for this problem.

5. Run the strongly connected components algorithm on the directed graph shown
below, where each vertex is labeled with its ID and DFS number. When traversing
the graph, the algorithm should follow the given DFS numbers (from larger to
smaller numbers). Show the High values as computed by the algorithm in each
step.

a(9)

i(1) d(6)

g(3)
b(8)

f(4)

h(2) e(5)

c(7)

6. Consider designing an algorithm by dynamic programming to determine the length
of a longest common subsequence of two strings (sequences of letters). For example,
“abbcc” is a longest common subsequence of “abcabcabc” and “aaabbbccc”, and
so is “abccc”.

(a) Formulate the solution using recurrence relations.

(b) Present the algorithm in suitable pseudocode, based on the previous recursive
formulation. What is the time complexity of your algorithm?

7. The bipartite matching problem (the maximum-cardinality matching problem for
bipartite graphs) can be reduced to the network flow problem, which in turn can be
reduced to linear programming. Please illustrate the reductions, using the graph
below as input to the bipartite matching problem.

2

u1

u2

u3

v1

v2

v3

(a) Draw the network resulted from the conversion of the bipartite graph.

(b) Give the linear-programming objective function and constraints for the net-
work.

8. To prove that “P = NP” (which seems unlikely though), it suffices to show that
some NP-complete problem is in P. Why? Please explain.

9. In the proof (discussed in class) of the NP-hardness of the 3SAT problem by re-
duction from the SAT problem, we convert an arbitrary boolean expression in CNF
(input of the SAT problem) to a boolean expression in 3CNF (where each clause
has exactly three literals).

(a) Please illustrate the conversion by giving the boolean expression that will be
obtained from the following boolean expression:

(v + x) · (w + x + y + z) · (v + w + x + y + z).

(b) The original boolean expression is satisfiable. As a demonstration of why the
reduction is correct, please use the resulting boolean expression to show that
it is indeed the case.

10. Solve one of the following two problems. (Note: if you try to solve both problems,
I will randomly pick one of them to grade.)

(a) The hitting set problem is as follows.

Given a collection C of subsets of a set S and a positive integer k,
does S contain a hitting set for C of size k or smaller, that is, a subset
S ′ ⊆ S with |S ′| ≤ k such that S ′ contains at least one element from
each subset in C?

Prove that the hitting set problem is NP-complete.

(b) The subgraph isomorphism problem is as follows.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), does G1 have a
subgraph that is isomorphic to G2? (Two graphs are isomorphic if
there exists a one-one correspondence between the two sets of vertices
of the two graphs that preserves adjacency, i.e., if there is an edge
between two vertices of the first graph, then there is also an edge
between the two corresponding vertices in the second graph, and vice
versa.)

Prove that the subgraph isomorphism problem is NP-complete.

3

Appendix

• Below is the algorithm discussed in class for determining the strongly connected
components of a directed graph.

Algorithm Strongly Connected Components(G, n);
begin

for every vertex v of G do
v.DFS Number := 0;
v.component := 0;

Current Component := 0; DFS N := n;
while v.DFS Number = 0 for some v do

SCC(v)
end

procedure SCC(v);
begin

v.DFS Number := DFS N ;
DFS N := DFS N − 1;
insert v into Stack;
v.high := v.DFS Number;
for all edges (v, w) do

if w.DFS Number = 0 then
SCC(w);
v.high := max(v.high, w.high)

else if w.DFS Number > v.DFS Number
and w.component = 0 then

v.high := max(v.high, w.DFS Number)
if v.high = v.DFS Number then

Current Component := Current Component + 1;
repeat

remove x from the top of Stack;
x.component := Current Component

until x = v
end

• The vertex cover problem: given an undirected graph G = (V,E) and an integer k,
determine whether G has a vertex cover containing ≤ k vertices. (A vertex cover
of G is a subset C of vertices such that every edge in G is incident to at least one
of the vertices in C.)

The vertex cover problem is complete.

• The Hamiltonian cycle problem: given an undirected graph G, does G have a
Hamiltonian cycle? (A Hamiltonian cycle in a graph is a cycle that contains each
vertex, except the starting vertex of the cycle, exactly once.)

The Hamiltonian cycle problem is NP-complete.

4

