
Algorithms [November 5, 2019] Fall 2019

Midterm

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise
marked.

Problems

1. Consider a round-robin tournament among n players. In the tournament, each
player plays once against all other n − 1 players. There are no draws, i.e., for a
match between A and B, the result is either A beat B or B beat A. Prove by
induction that, after a round-robin tournament, it is always possible to arrange the
n players in an order p1, p2, · · · , pn such that p1 beat p2, p2 beat p3, · · ·, and pn−1

beat pn. (Note: the “beat” relation, unlike “≥”, is not transitive.)

2. Find the error in the following proof that all horses are the same color.

CLAIM: In any set of h horses, all horses are the same color.

PROOF: By induction on h.

Basis (h = 1): In any set containing just one horse, all horses clearly are the same
color.

Inductive step (h > 1): We assume that the claim is true for h = k (k ≥ 1) and
prove that it is true for h = k+1. Take any set H of k+1 horses. We show that all
the horses in this set are the same color. Remove one horse from this set to obtain
the set H1 with just k horses. By the induction hypothesis, all the horses in H1

are the same color. Now replace the removed horse and remove a different one to
obtain the set H2. By the same argument, all the horses in H2 are the same color.
Therefore all the horses in H must be the same color, and the proof is complete.

3. Let G(h) denote the least possible number of nodes contained in an AVL tree of
height h. Let us assume that the empty tree has height −1 and a single-node tree
has height 0.

(a) Please give a recurrence relation that characterizes (fully defines) G.

(b) Based on the recurrence relation, prove that the height of an AVL tree with n
nodes is O(log n).

4. The Knapsack Problem that we discussed in class is defined as follows: Given a set
S of n items, where the ith item has an integer size S[i], and an integer K, find a
subset of the items whose sizes sum to exactly K or determine that no such subset
exists.

We have described in class an algorithm (see the Appendix) to solve the problem.
Modify the algorithm to solve a variation of the knapsack problem where each item

1



has an unlimited supply. In your algorithm, please change the type of P [i, k].belong
into integer and use it to record the number of copies of item i needed. Give an
analysis of its time complexity. The more efficient your algorithm is, the more
points you will get for this problem.

5. Let x1, x2, · · · , x2n−1, x2n be a sequence of 2n real numbers. Design an algorithm to
partition the numbers into n pairs such that the maximum of the n sums of pair is
minimized. It may be intuitively easy to get a correct solution. You must explain
how the algorithm can be designed using induction.

6. Below is the Mergesort algorithm in pseudocode:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left, Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d1

2
(Left + Right)e;

M Sort(Left,Middle− 1);
M Sort(Middle, Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i + 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left + t] := TEMP [1 + t]
end

Given the array below as input, what are the contents of array TEMP after the
merge part is executed for the first time and what are the contents of TEMP when
the algorithm terminates? Assume that each entry of TEMP has been initialized
to 0 when the algorithm starts.

1 2 3 4 5 6 7 8 9 10 11 12

6 3 9 7 5 8 11 2 1 12 4 10

7. Design an in-place algorithm that sorts an array of numbers according to a pre-
scribed order. The input is a sequence of n numbers x1, x2, · · ·, xn and another

2



sequence a1, a2, · · ·, an of n distinct numbers between 1 and n (i.e., a1, a2, · · ·,
an is a permutation of 1, 2, · · ·, n), both represented as arrays. Your algorithm
should sort the first sequence according to the order imposed by the permutation
as prescribed by the second sequence. For each i, xi should appear in position ai
in the output array. As an example, if x = 23, 9, 5, 17 and a = 4, 1, 3, 2, then the
output should be x = 9, 17, 5, 23.

Please describe your algorithm as clearly as possible; it is not necessary to give
the pseudocode. Remember that the algorithm must be in-place, without using
any additional storage for the numbers to be sorted (except some constant space
for exchanging two elements) . Give an analysis of its time complexity. The more
efficient your algorithm is, the more points you will get for this problem.

8. Below is a variant of the partition algorithm for quicksort.

Algorithm Partition(A,Left, Right);
begin

pivot := A[Left];
L := Left + 1; R := Right;
while L < R do
begin

while A[L] ≤ pivot and L ≤ Right do L := L + 1;
while A[R] > pivot and R ≥ Left do R := R− 1;
if L < R then swap(A[L], A[R]);

end
Middle := R;
swap(A[Left], A[Middle])

end

Draw a decision tree of the algorithm for the case of Partition(A, 1, 3). In the
decision tree, you must indicate (1) which two elements of the original input array
are compared in each internal node and (2) the partition result in each leaf. Please
use X1, X2, X3 (not A[1], A[2], A[3]) to refer to the elements (in this order) of the
original input array A.

9. Construct a Huffman code tree for a text composed from seven characters A, B, C,
D, E, F, and G with frquencies 15, 4, 2, 7, 21, 3, and 10 respectively.

10. The next table is a precomputed table that plays a critical role in the KMP algo-
rithm. For every position j of the second input string b1b2 . . . bm (to be matched
against the first input string), the value of next [j] tells the length of the longest
proper prefix that is equal to a suffix of b1b2 . . . bj−1; the value of next [0] is set to
−1 to fit in the KMP algroithm. For each of the following instances of next , give
a string of letters a and b that gives rise to the table or argue that no string can
possibly produce the table.

(a)

1 2 3 4 5 6 7 8 9
−1 0 0 1 1 1 2 3 4

3



(b)

1 2 3 4 5 6 7 8 9
−1 0 1 2 3 4 1 2 3

Appendix

• Below is an algorithm for determining whether a solution to the (original) Knapsack
Problem exists.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• The algorithm for computing the next table in the KMP algorithm is as follows.

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

4


