Algorithms Spring 2000

Final

(June 15, 2000)

Note

This is a closed-book exam. Each problem accounts for 10 points, unless otherwise marked.

Problems

1. Design an efficient algorithm to determine whether two sorted arrays have a common
element. Present your algorithm in a reasonable pseudocode. State the time complexity
of your algorithm in terms of the sizes m and n of the given arrays. The more efficient

your algorithm is, the more points you get for this problem.

2. Compute the next table as in the KMP algorithm for the string B[1..10] = bababbabaa.
Show the details of calculation for B[9] and B[10].

3. Given two strings A = aabch and B = acabbb, compute the minimal cost matrix
C10..5,0..6] for changing A character by character to B. Show the detail of calculation
for the entry C5,6]. (15 points)

4. Below is an algorithm skeleton for depth-first search utilizing a stack; assume that the
input graph is connected. Modify it to obtain an algorithm for recording a DFS tree
of the input graph. You should try not to change the overall structure of the original
algorithm.

Algorithm Simple Nonrecursive DFS (G, v);
begin
push v to Stack;
while Stack is not empty do
pop vertex w from Stack;
if w is unmarked then
mark w;

for all edges (w, z) such that x is unmarked do

1



push z to Stack

end

. Design an algorithm that, given as input a directed acyclic graph G, finds a simple
path in G with the maximum number of edges among all simple paths of G. Your

algorithm should run in linear time.

. Let G = (V, FE) be a connected undirected graph. A set F' C F is called a feedback-
edge set if every cycle of G has at least one edge in F'. Design an algorithm to find

a minimum-size feedback-edge set. It is sufficient to describe the main idea of the

algorithm. (Hint: think about £ — F'.)

. A connected undirected graph is called edge-biconnected if the graph remains connected
after the removal of any edge.
(a) Find a graph that is edge-biconnected but not biconnected. (5 points)
(b) Design a linear-time algorithm to determine whether a graph is edge-biconnected.

It is sufficient to describe the main idea of the algorithm. (10 points)

. Solve any two of the following three problems. (Note: If you try to solve all three
problems, I will randomly pick two of them to grade.) (20 points)

(a) A dominating set D of a graph G = (V, E) is a subset of V such that every
member of V' is either in D or is adjacent to some vertex in D. The dominating

set problem is as follows.

Given an undirected graph GG and an integer k, determine whether (G has

a dominating set containing < k vertices.
Prove that the dominating set problem is NP-complete.
(b) The traveling salesman problem is as follows.

The input includes a set of cities, the distances between all pairs of cities,
and a number D. The problem is to determine whether there exists a

(traveling-salesman) tour of all the cities having total length < D.
Prove that the traveling salesman problem is NP-complete.
(¢) The knapsack problem is as follows.

Given a set X, where each element x € X has an associated size s(x) and
value v(z), and two other numbers S and V', is there a subset B C X

whose total size is < S and whose total value is > V7



Prove that the knapsack problem is NP-complete.

Appendix

e The vertex cover problem: given an undirected graph GG = (V| F) and an integer k,
determine whether (G has a vertex cover containing < k vertices. A vertex cover of G
is a set of vertices such that every edge in (G is incident to at least one of these vertices.

The problem is NP-complete.

e The partition problem: given a set X where each element x € X has an associated
size s(x), is it possible to partition the set into two subsets with exactly the same total
size?

The problem is NP-complete.

e The Hamiltonian cycle problem: given a graph G, does G contain a Hamiltonian cycle?
(A Hamiltonian cycle in a graph is a cycle that contains each vertex, except the starting
vertex of the cycle, exactly once.)

The problem is NP-complete.



