
Algorithms [Compiled on May 18, 2015] Spring 2015

Suggested Solutions to Midterm Problems

1. Consider the geometric series: 1, 2, 4, 8, 16, . . .. Prove by induction that any positive
integer can be written as a sum of distinct numbers from this series.

Solution. The proof is by strong induction on n that represents an arbitrary positive
integer.

Base case (n = 1): the statement is obviously true, as 1 is itself in the geometric series.

Inductive step (n > 1): we consider two cases separately: when n is even and when n is
odd.

Case 1: n is even. Let n = 2 × k, where k ≥ 1. By the induction hypothesis, let k be
the sum of the series s1, s2, . . . , sj , which are distinct numbers taken from the geometric
series. Then, n is the sum of 2 × s1, 2 × s2, . . . , 2 × sj , which are also distinct numbers
from the geometric series.

Case 2: n is odd. Let n = 2× k + 1, where k ≥ 1. By the induction hypothesis, let k be
the sum of the series s1, s2, . . . , sj , which are distinct numbers from the geometric series.
Then, n is the sum of 1, 2 × s1, 2 × s2, . . . , 2 × sj , which are also distinct numbers from
the geometric series. 2

2. Prove by induction that the sum of the heights of all nodes in a complete binary tree with
n nodes is at most n− 1. You may assume it is known that the sum of the heights of all
nodes in a full binary tree of height h is 2h+1−h−2. (Note: a single-node tree has height
0.)

Solution. Let G(n) denote the sum of the heights of all nodes in a complete binary
tree with n nodes. For a full binary tree (a special case of complete binary trees) with
n = 2h+1 − 1 nodes where h is the height of the tree, we already know that G(n) =
2h+1 − (h + 2) = n− (h + 1) ≤ n− 1. With this as a basis, we prove the general case of
arbitrary complete binary trees by induction on the number n (≥ 1) of nodes.

Base case (n = 1 or n = 2): When n = 1, the tree is the smallest full binary tree with one
single node whose height is 0. So, G(n) = 0 ≤ 1 − 1 = n − 1. When n = 2, the tree has
one additional node as the left child of the root. The height of the root is 1, while that of
its left child is 0. So, G(n) = 1 ≤ 2− 1 = n− 1.

Inductive step (n > 2): If n happens to be equal to 2h+1 − 1 for some h ≥ 1, i.e., the tree
is full, then we are done; note that this covers the case of n = 3 = 21+1 − 1. Otherwise,
suppose 2h+1− 1 < n < 2h+2− 1 (h ≥ 1), i.e., the tree is a “proper” complete binary tree
with height h+ 1 ≥ 2. We observe that at least one of the two subtrees of the root is full,
while the other is complete (possibly full). There are three cases to consider:

Case 1: The left subtree is full with n1 nodes and the right one is complete but not full
with n2 nodes (such that n1 +n2 +1 = n). In this case, both subtrees much be of height h
and n1 = 2h+1−1. From the special case of full binary trees and the induction hypothesis,
G(n1) = 2h+1−(h+2) = n1−(h+1) and G(n2) ≤ n2−1. G(n) = G(n1)+G(n2)+(h+1) ≤
(n1 − (h + 1)) + (n2 − 1) + (h + 1) = (n1 + n2 + 1)− 2 ≤ n− 1.

Case 2: The left subtree is full with n1 nodes and the right one is also full with n2 nodes.
In this case, the left subtree much be of height h and n1 = 2h+1 − 1, while the right
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subtree much be of height h − 1 and n2 = 2h − 1. ¿From the special case of full binary
trees, G(n1) = 2h+1 − (h + 2) = n1 − (h + 1) and G(n2) = 2h − (h + 1) = n2 − h. G(n) =
G(n1)+G(n2)+(h+1) ≤ (n1−(h+1))+(n2−h)+(h+1) = (n1+n2+1)−(h+1) ≤ n−1.

Case 3: The left subtree is complete but not full with n1 nodes and the right one is
full with n2 nodes. In this case, the left subtree much be of height h, while the right
subtree much be of height h − 1 and n2 = 2h − 1. ¿From the induction hypothesis and
the special case of full binary trees, G(n1) ≤ n1 − 1 and G(n2) = 2h − (h + 1) = n2 − h.
G(n) = G(n1)+G(n2)+(h+1) ≤ (n1−1)+(n2−h)+(h+1) = (n1 +n2 +1)−1 = n−1.
2

3. In the so-called implicit representation of a binary tree, the tree nodes are stored in an
array, say A, such that

(a) the root is stored in A[1] and

(b) the left child of (the node stored in) A[i] is stored in A[2i] and the right child in
A[2i + 1]. (Note: a nonexistent child may be indicated by a special mark/value in
the corresponding cell for storing the child.)

Prove by induction that, for complete binary trees, the implicit representation is compact
in the sense that, if we label the tree nodes from top to bottom and left to right with the
numbers 1 through n (where n is the number of nodes in the tree), then the node labeled
i is stored in A[i] for 1 ≤ i ≤ n.

Solution. We first observe that a complete binary tree of n nodes is obtained from another
of n− 1 nodes as follows. If node n− 1 (according to the labeling from top to bottom and
left to right) is the left child of a node, node n is simply added as the right child of the
same node. If node n− 1 is the right child of a node i (i < n− 1), then node n is added
as the left child of node i + 1.

The proof of compactness is by induction on n.

Base case (n = 1, 2): when n = 1, the only element is the root which is labeled 1 and,
according to the implicit representation, is stored in A[1]. When n = 2, the node labeled
1 is stored in A[1] as in the case of n = 1. The node labeled 2 is the left child of node 1,
i.e., A[1], and according to the implicit representation, is stored in A[2× 1], i.e., A[2].

Inductive step (n > 2): from the induction hypothesis and the observation stated in the
beginning, the part of nodes 1 through n− 1 are stored in A[1..n− 1] in the right order.
We need to show that the last node, labeled n, will indeed be stored in A[n] according to
the implicit representation. There are two cases:

When n − 1 is even (n − 1 ≥ 2), node n − 1, stored in A[n − 1] (from the induction
hypothesis), is the left child of A[n−1

2 ] (according to the implicit representation), i.e.,
node n−1

2 (from the induction hypothesis). Hence, node n should be the right child of
node n−1

2 (or A[n−1
2 ]) and stored in A[2× n−1

2 + 1], i.e., A[n].

When n − 1 is odd (n − 1 ≥ 3), node n − 1, stored in A[n − 1], is the right child of
A[n−1−1

2 ], i.e., node n−1−1
2 . Hence, node n should be the left child of node n−1−1

2 + 1 (or
A[n−1−1

2 + 1]) and stored in A[2(n−1−1
2 + 1)], i.e., A[n].

2

4. (15 points) Let G(h) denote the least possible number of nodes contained in an AVL tree
of height h. Let us assume that the empty tree has height −1 and a single-node tree has
height 0.
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(a) (5 points) Please give a recurrence relation that characterizes (fully defines) G.

Solution. The recurrence relation can be defined as follows:
G(−1) = 0
G(0) = 1
G(h) = G(h− 1) + G(h− 2) + 1, h ≥ 1

2

(b) (10 points) Based on the recurrence relation, prove that the height of an AVL tree
with n nodes is O(log n).

Solution. A precise solution to G(h) may be derived by establishing the relation
G(h) = F (h + 3) − 1, where F (n) is the n-th Fibonacci number (as defined in
Chapter 3.5 of Manber’s book) for which we already know the closed form; the proof
is in fact quite simple by induction. However, we will prove directly a lower bound
for G(h), namely Ω((32)h), which is good enough to show its exponential growth. The
proof is by induction on h, showing that G(h) ≥ 2

3(32)h, for h ≥ 0.

Base case (h = 0 or h = 1): When h = 0, 2
3(32)0 = 2

3 ≤ 1 = G(0). When h = 1,
2
3(32)1 = 1 ≤ 2 = G(1).

Inductive step (h > 1): G(h) = G(h − 1) + G(h − 2) + 1, which from the induction
hypothesis ≥ 2

3(32)h−1 + 2
3(32)h−2 + 1 ≥ (1 + 2

3)(32)h−2 = (1 + 2
3)(32)−2(32)h = 20

27(32)h ≥
2
3(32)h.

Therefore, for an AVL tree of size n, its height h must be such that 2
3(32)h ≤ G(h) ≤ n.

It follows that h ≤ 1
log 1.5 log n + 1 (base 2 logarithm), implying h = O(log n). 2

5. (15 points) Consider the Knapsack Problem: Given a set S of n items, where the i-th
item has an integer size S[i], and an integer K, find a subset of the items whose sizes sum
to exactly K or determine that no such subset exists.

Below is a recursive version of the algorithm for determining whether a solution to the
Knapsack Problem exists, where we have ignored the tag values for recording the subset of
items that constitute the solution. The algorithm should be invoked with Knapsack(n,K).

Algorithm Knapsack(m, k);
begin

if k = 0 then return true;
if m = 0 then return false;
if Knapsack(m− 1, k) then return true
else if k − S[m] ≥ 0 then return Knapsack(m− 1, k − S[m])

else return false;
end

(a) (5 points) Given an input, Knapsack(m, k) may be invoked with the same combina-
tion of m and k at different points of execution. Why? Please give an example.

Solution. Suppose there are 4 items, with sizes 2, 3, 5, and 5, and we are looking
for a subset whose sizes sum to 15. Assuming that recursive function calls are used,
below is the two-dimensional table P whose entries are filled with -, O, I, or left
blank when the algorithm terminates.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O - - (-) (-) (-) (-) - - -

k1 = 2 I - (-) (-) - -

k2 = 3 I (-) -

k3 = 5 I -

k4 = 5 I

The parenthesized entries are invoked more than once. In particular, Knapsack(2, 10)
is invoked via the following two different invocation chains: Knapsack(4, 15) →
Knapsack(3, 15) → Knapsack(2, 10) and Knapsack(4, 15) → Knapsack(3, 10) →
Knapsack(2, 10). 2

(b) (10 points) How will you propose to avoid duplicate invocations? Please revise the
code to incorporate your proposal. (Hint: use an array to memorize the result of an
invocation.)

Solution. The following algorithm assumes a global two-dimensional array P , whose en-
tries are three-valued: 0 (result not known), −1 (negative), 1 (positive).

Algorithm Knapsack(m, k);
begin

for i := 0 to m do
for j := 0 to k do

P [i, j] := 0; // result not known yet
return Mem Knapsack(m, k);

end

Function Mem Knapsack(m, k);
begin

if P [m, k] 6= 0 then return P [m, k];
if m = 0 then P [m, k] := −1;
if k = 0 then P [m, k] := 1;
if Mem Knapsack(m− 1, k) then P [m, k] := 1
else P [m− 1, k] := −1;

if k − S[m] ≥ 0 then return Mem Knapsack(m− 1, k − S[m])
else P [m, k] := −1;

return P [m, k];
end

2

6. Show all intermediate and the final AVL trees formed by inserting the numbers 6, 1, 2, 5,
4, and 3 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution. (Willy Chang)

Insert 6:
6
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Insert 1:

6

1

Insert 2:

6

1

2 →

2

1 6
([LR] double right rotation)

Insert 5:

2

1 6

5

Insert 4:

2

1 6

5

4 →

2

1 5

4 6

([LL]/[R] single right rotation on chain 6-5-4)

Insert 3:

2

1 5

4

3

6

→

4

2

1 3

5

6

([RL] double left rotation on chain 2-5-4) 2
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7. Apply the Quicksort algorithm to the following array. Show the contents of the array
after each partition operation. If you use a different partition algorithm (from the one
discussed in class), please describe it.

1 2 3 4 5 6 7 8 9 10 11 12

9 10 4 6 11 7 8 2 1 12 3 5

Solution. (Wei-Shao Tang)
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1 2 3 4 5 6 7 8 9 10 11 12

9 10 4 6 11 7 8 2 1 12 3 5

1 5 4 6 3 7 8 2 9 12 11 10

1 5 4 6 3 7 8 2 9 12 11 10

1 3 4 2 5 7 8 6 9 12 11 10

1 2 3 4 5 7 8 6 9 12 11 10

1 2 3 4 5 6 7 8 9 12 11 10

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

2

8. Please present in suitable pseudocode the algorithm (discussed in class) for rearranging
an array A[1..n] of n integers into a max heap using the bottom-up approach.

Solution.

Algorithm Build_Heap(A,n);

begin

for i := n DIV 2 downto 1 do

parent := i;

child1 := 2*parent;

child2 := 2*parent + 1;

if child2 > n then child2 := child1;

if A[child1]>A[child2] then maxchild := child1

else maxchild := child2;

while maxchild<=n and A[parent]<A[maxchild] do

swap(A[parent],A[maxchild]);

parent := maxchild;

child1 := 2*parent;

child2 := 2*parent + 1;

if child2 > n then child2 := child1;

if A[child1]>A[child2] then maxchild := child1

else maxchild := child2;

end;

end;

end;

2

9. Below is a variant of the insertion sort algorithm.

Algorithm Insertion Sort (A,n);
begin

for i := 2 to n do
x := A[i];
j := i;
while j > 1 and A[j − 1] > x do

A[j] := A[j − 1];
j := j − 1;

end while
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A[j] := x;
end for

end

Draw a decision tree of the algorithm for the case of A[1..3], i.e., n = 3. In the decision
tree, you must indicate (1) which two elements of the original input array are compared
in each internal node and (2) the sorting result in each leaf. Please use X1, X2, X3 to
refer to the elements (in this order) of the original input array.

Solution.

X1 : X2

X1 : X3

X2 : X3

X3X2X1X2X3X1

X2X1X3

X2 : X3

X1 : X3

X3X1X2X1X3X2

X1X2X3

≤ >

2

Appendix

• The solution of the recurrence relation T (n) = aT (n/b) + cnk, where a and b are integer
constants, a ≥ 1, b ≥ 2, and c and k are positive constants, is as follows.

T (n) =


O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

• Below is a non-recursive algorithm for determining whether a solution to the Knapsack
Problem exists.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end
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