
Algorithms [Compiled on May 9, 2017] Spring 2017

Suggested Solutions to Midterm Problems

1. Find the error in the following proof that all horses are the same color.

CLAIM: In any set of h horses, all horses are the same color.

PROOF: By induction on h.

Basis (h = 1): In any set containing just one horse, all horses clearly are the same color.

Inductive step (h > 1): We assume that the claim is true for h = k (k ≥ 1) and prove
that it is true for h = k + 1. Take any set H of k + 1 horses. We show that all the horses
in this set are the same color. Remove one horse from this set to obtain the set H1 with
just k horses. By the induction hypothesis, all the horses in H1 are the same color. Now
replace the removed horse and remove a different one to obtain the set H2. By the same
argument, all the horses in H2 are the same color. Therefore all the horses in H must be
the same color, and the proof is complete.

Solution. The inductive step is erroneous, as one cannot prove the claim for the case of
h = 2 assuming it holds for h = 1. For h = 2, the two sets H1 and H2 (resulted from
removing one of the hourses) are both of size 1 and do not have any common member.
The horses in each of the two sets are indeed the same color, since there is just one horse
in each set. However, the two horses from the two sets (which does not overlap) may have
different colors. 2

2. Consider the following two-player game: given a positive integer N , player A and player
B take turns counting to N . In his turn, a player may advance the count by 1 or 2. For
example, player A may start by saying “1, 2”, player B follows by saying “3”, player A
follows by saying “4”, etc. The player who eventually has to say the number N loses the
game.

A game is determined if one of the two players always has a way to win the game. Prove
that the counting game as described is determined for any positive integer N ; the winner
may differ for different given integers. You must use induction in your proof. (Hint: think
about the remainder of the number N divided by 3.)

Solution. We first prove the following claim:

When N = 3k + 1 for some k ≥ 0, player B can always win the game.

The proof is by induction on k.

Base case (k = 0, i.e., N = 1): player A has no other choice but say 1 and hence player
B wins.

Inductive step (k ≥ 1, i.e., N = 3k + 1 ≥ 4): player A starts either by “1” or “1, 2”. In
both cases, player B can always count to 3. At this point we have the situation analogous
to where the two players are to play a game with N = 3(k− 1) + 1, in which player B can
always win from the induction hypothesis.

We next prove a second claim:

When N = 3k + 2 or N = 3(k + 1) for some k ≥ 0, player A can always win the
game.

1



In the case when N = 3k + 2, player A starts by saying “1”, while in the case when
N = 3(k + 1), he starts by “1, 2”. After player A’s first turn, we have the situation
analogous to that player B is to start a game with N = 3k + 1, playing the role of player
A (to start first in the remaining game). From the first claim, player A (playing the role
of player B in the remaining game) will win the game.

Now we see that, for every positive integer N , there is always a player that can win the
counting game and hence the game is determined. 2

3. Summations whose exact values are hard to compute may be easily and tightly bounded
by integrals. For example, if f(x) is monotonically decreasing, then∫ n+1

1
f(x)dx ≤

n∑
i=1

f(i) ≤ f(1) +

∫ n

1
f(x)dx.

(a) Show that the bounds for
∑n

i=1 f(i) are indeed correct.

Solution. Given that f(x) is monotonically decreasing, we have∫ 2
1 f(x)dx ≤ f(1) ≤ f(1)∫ 3
2 f(x)dx ≤ f(2) ≤

∫ 2
1 f(x)dx∫ 4

3 f(x)dx ≤ f(3) ≤
∫ 3
2 f(x)dx

· · ·∫ n
n−1 f(x)dx ≤ f(n− 1) ≤

∫ n−1
n−2 f(x)dx∫ n+1

n f(x)dx ≤ f(n) ≤
∫ n
n−1 f(x)dx∫ n+1

1 f(x)dx ≤
∑n

i=1 f(i) ≤ f(1) +
∫ n
1 f(x)dx

So, the bounds for the summation
∑n

i=1 f(i) are correct. The following illustrates
how the summation is related to the upper bound.

0 1 2 3 n
x

f(x)

. . . 

n-1

2

(b) Prove, using this bounding technique, that
∑n

i=1
1
i = Θ(log n).

Solution. We know that
∫ 1

xdx = lnx (plus some constant, which may be ignored).∑n
i=1

1
i ≥

∫ n+1
1

1
xdx = ln(n + 1)− ln 1 = ln(n + 1) ≥ 1

log e log n.

So,
∑n

i=1
1
i = Ω(log n).∑n

i=1
1
i ≤

1
1 +

∫ n
1

1
xdx = 1 + lnn− ln 1 ≤ 1 + lnn ≤ 2

log e log n (for n ≥ 3).

So,
∑n

i=1
1
i = O(log n).

It follows that
∑n

i=1
1
i = Θ(log n). 2

2



4. The Knapsack Problem that we discussed in class is defined as follows: Given a set S of n
items, where the ith item has an integer size S[i], and an integer K, find a subset of the
items whose sizes sum to exactly K or determine that no such subset exists.

We have described in class an algorithm to solve the problem. Modify the algorithm to
solve a variation of the knapsack problem where each item has an unlimited supply. In
your algorithm, please change the type of P [i, k].belong into integer and use it to record
the number of copies of item i needed.

Solution.

Algorithm Knapsack Unlimited (S,K);
begin

P [0, 0].exist := true;
P [0, 0].belong := 0;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := 0

else if k − S[i] ≥ 0 then
if P [i, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := P [i, k].belong + 1

end

2

5. Show all intermediate and the final AVL trees formed by inserting the numbers 1, 2, 5, 7,
4, 3, and 6 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution.

Insert 1:
1

Insert 2:

1

2
Insert 5:

1

2

5

Single rotation at 1:

2

51
Insert 7:

2

5

7

1

3



Insert 4:

2

5

74

1

Insert 3:

2

5

74

3

1

Double rotation at 2:

4

5

7

2

31

Insert 6:

4

5

7

6

2

31

Double rotation at 5:

4

6

75

2

31

2

6. Below is the Mergesort algorithm in pseudocode:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d12(Left + Right)e;
M Sort(Left,Middle− 1);
M Sort(Middle,Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;

4



if X[i] ≤ X[j] then
TEMP [k] := X[i]; i := i + 1

else TEMP [k] := X[j]; j := j + 1;
if j > Right then

for t := 0 to Middle− 1− i do
X[Right− t] := X[Middle− 1− t]

for t := 0 to k − 1 do
X[Left + t] := TEMP [1 + t]

end

Given the array below as input, what are the contents of array TEMP after the merge
part is executed for the first time and what are the contents of TEMP when the algorithm
terminates? Assume that each entry of TEMP has been initialized to 0 when the algorithm
starts.

1 2 3 4 5 6 7 8 9 10 11 12

7 8 3 6 5 9 11 2 1 12 4 10

Solution.

The contents of array TEMP after the merge part is executed for the first time:

1 2 3 4 5 6 7 8 9 10 11 12

3 7 0 0 0 0 0 0 0 0 0 0

The contents of array TEMP when the algorithm terminates:

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 0 0 0 2

7. The partition procedure in the Quicksort algorithm chooses an element as the pivot and
divide the input array A[1..n] into two parts such that, when the pivot is properly placed in
A[i], the entries in A[1..(i−1)] are less than or equal to A[i] and the entries in A[(i+1)..n]
are greater than or equal to A[i]. Please design an extension of the partition procedure so
that it chooses two pivots and divides the input array into three parts. Assuming the two
pivots are eventually placed in A[i] and A[j] (i < j) respectively, the entries in A[1..(i−1)]
are less than or equal to A[i], the entries in A[(i + 1)..(j − 1)] are greater than or equal
to A[i] and less than or equal to A[j], and the entries in A[(j + 1)..n] are greater than or
equal to A[j].

Please present your extension in adequate pseudocode and make assumptions wherever
necessary. Give an analysis of its time complexity. The more efficient your algorithm is,
the more points you will be credited for this problem.

Solution.

Partition3(X, Left, Right);

begin

if X[Left] > X[Right] then swap(X[Left], X[Right]);

pivot1 := X[Left];

pivot2 := X[Right];

i := Left;

k := Right;

j := Left + 1;

5



while (j < k) do

if X[j] < pivot1 then

i := i + 1;

swap(X[i], X[j]);

j := j + 1;

else

if X[j] > pivot2 then

k := k - 1;

swap(X[j], X[k]);

end if;

end if;

end while;

swap(X[Left], X[i]);

swap(X[Right], X[k]);

end

The algorithm contains one layer of for-loop, where the bound condition (j < k) can
only grow stricter (k may decrease but not increase) and each iteration takes a constant
amount of time, so it is clearly linear-time. 2

8. Consider rearranging the following array into a max heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 7 5 1 9 13 6 4 11 10 12 15 14 8

Please show the result (i.e., the contents of the array) after a new element is added to the
current collection of heaps (at the bottom) until the entire array has become a heap.

Solution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 7 5 1 9 13 6 4 11 10 12 15 14 8

2 3 7 5 1 9 14 6 4 11 10 12 15 13 8

2 3 7 5 1 15 14 6 4 11 10 12 9 13 8

2 3 7 5 11 15 14 6 4 1 10 12 9 13 8

2 3 7 6 11 15 14 5 4 1 10 12 9 13 8

2 3 15 6 11 12 14 5 4 1 10 7 9 13 8

2 11 15 6 10 12 14 5 4 1 3 7 9 13 8

15 11 14 6 10 12 13 5 4 1 3 7 9 2 8

2

9. Two computers, each with a set of n integers, try to collaboratively find the n-th smallest
element of the union of the two sets. The two computers can communicate by sending
messages and they can perform any kind of local computation. A message can contain one
element or one integer; a message with two numbers should be counted as two messages.
Design an algorithm for the search task so that the number of messages exchanged is
minimized. You can assume, for simplicity, that all the elements are distinct.

Please present your algorithm in an adequate pseudo code and make assumptions wherever
necessary. Give an analysis of its message complexity (the number of messages exchanged).
The more efficient your algorithm is, the more points you will get for this problem.

Solution. Let us refer to the two computers as Computer 0 and Computer 1. Computer 0
holds its set of n integers in array A and Computer 1 in array B. For convenience, we will

6



also treat arrays as sets so that set operations may be applied to arrays. The numbers
assumed to be distinct, A ∪ B holds totally 2n integers. For a number a in A, if it is
ranked j-th in A and k-th in B∪{a} such that j+k−1 = n, then it is the number ranked
n-th in A ∪B; analogously, for a number in B.

To find the n-th smallest number (the number ranked n-th) in A ∪ B, the two com-
puters run the same procedure Search as below with different arguments, by invoking
Search(0, A, n) and Search(1, B, n) respectively. The basic idea of the procedure is that
Computer 0 first selects a candidate and sends it to Computer 1 for validation (checking
whether j + k − 1 = n). If Computer 1 found the candidate to be too small, it suggests
a larger candidate; and if too large, it suggests a smaller candidate. When a candidate
is found to be ranked n-th, the discover sends the same number back to the proposing
computer and stops; the proposing computer also stops when it receives the number and
finds it to be the same as the last number it sent.

Algorithm Search (i,X, n);
begin

sort X in ascending order;
if i = 0 then

L := 1;
R := n;

j := dL+R
2 e;

a := X[j];
send message(a, j) to Computer (1− i);

else // i = 1
receive message(b, j) from Computer (1− i);
k := the rank of b in X ∪ {b};
if j + k − 1 = n then

send message(b, k) to Computer (1− i);
stop;

else
if j + k − 1 < n then

L := k;
R := n;

else // j + k − 1 > n
L := 1;
R := k − 1;

end if ;

j := dL+R
2 e;

a := X[j];
send message(a, j) to Computer (1− i);

end if ;
done := false;
repeat

receive message(b, j) from Computer (1− i);
if b = a then

done := true;
else

k := the rank of b in X ∪ {b};
if j + k − 1 = n then

7



done := true;
send message(b, k) to Computer (1− i);

else
if j + k − 1 < n then

L := k;
else

R := k − 1;
end if ;

j := dL+R
2 e;

a := X[j];
send message(a, j) to Computer (1− i);

end if ;
end if ;

until done
end

Every message (except the first and the last) received helps the receiving computer to cut
the search space by at least one half, each computer initially having a search space of n
integers. So, at most 2 log n messages were sent and received, plus the first and the last
messages the latter of which was used to signal discovery. Every message contains just
two numbers and is counted as two messages. It follows that the message complexity is
O(log n). 2

10. Below is a variant of the bubble sort algorithm in pseudocode.

Algorithm Bubble Sort (A,n);
begin

i := n;
repeat

swapped := false;
for j := 1 to i− 1 do

if A[j] > A[j + 1] then
swap(A[j], A[j + 1]);
swapped := true;

end if
end for
i := i− 1;

until (not swapped)
end

Draw a decision tree of the algorithm for the case of A[1..3], i.e., n = 3. In the decision
tree, you must indicate (1) which two elements of the original input array are compared
in each internal node and (2) the sorting result in each leaf. Please use X1, X2, X3 (not
A[1], A[2], A[3]) to refer to the elements (in this order) of the original input array.

Solution.

8



X1 : X2

X1 : X3

X2 : X3

X3X2X1X2X3X1

X2 : X1

X1X2X3X2X1X3

X2 : X3

X1 : X3

X3X1X2X1X3X2

X1X2X3

≤ >

Note: the 3rd leaf from the right contains an impossible outcome and the corresponding
decision (X2 : X1) is not necessary. However, the algorithm makes it anyway, as it does
not memorize X1 and X2 have been compared earlier. 2

Appendix

• Below is an algorithm for determining whether a solution to the (original) Knapsack
Problem exists.

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• Below is an alternative algorithm for partition in the Quicksort algorithm:

Partition (X,Left ,Right);
begin

pivot := X[left ];
i := Left ;
for j := Left + 1 to Right do

if X[j] < pivot then i := i + 1;
swap(X[i], X[j]);

Middle := i;
swap(X[Left ], X[Middle])

end

9


