Algorithms 2017: String Processing

(Based on [Manber 1989])
Yih-Kuen Tsay

1 Data Compression

Data Compression

Problem 1. Given a text (a sequence of characters), find an encoding for the characters that satisfies the prefix constraint and that minimizes the total number of bits needed to encode the text.

The prefix constraint states that the prefixes of an encoding of one character must not be equal to a complete encoding of another character.

Denote the characters by $c_{1}, c_{2}, \cdots, c_{n}$ and their frequencies by $f_{1}, f_{2}, \cdots, f_{n}$. Given an encoding E in which a bit string s_{i} represents c_{i}, the length (number of bits) of the text encoded by using E is $\sum_{i=1}^{n}\left|s_{i}\right| \cdot f_{i}$.

A Code Tree

Figure 6.17 The tree representation of encoding.

Source: [Manber 1989].

A Huffman Tree

Figure 6.19 The Huffman tree for example 6.1.

Source: [Manber 1989].

Huffman Encoding

```
Algorithm Huffman_Encoding (S,f);
    insert all characters into a heap H
        according to their frequencies;
    while }H\mathrm{ not empty do
        if H}\mathrm{ contains only one character }X\mathrm{ then
            make X the root of T
        else
            delete X and Y with lowest frequencies;
                from H;
            create Z with a frequency equal to the
                sum of the frequencies of X and Y;
            insert Z into H;
            make }X\mathrm{ and Y children of }Z\mathrm{ in }
```


2 String Matching

String Matching

Problem 2. Given two strings $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the first occurrence (if any) of B in A. In other words, find the smallest k such that, for all $i, 1 \leq i \leq m$, we have $a_{k-1+i}=b_{i}$.

A substring of a string A is a consecutive sequence of characters $a_{i} a_{i+1} \cdots a_{j}$ from A.

Straightforward String Matching

```
                                    A=xyxxyxyxyyxyxyxyyxyxyxx., B=xyxyyxyxyxx.
```



```
llllllllllllllllllllllllll
x
    x · .
        x y . . .
        x
            llllllllllllll
            * ·
            x}
                x . . .
                    llllll
                    x
```

Figure 6.20 An example of a straightforward string matching.

Source: [Manber 1989].

Matching Against Itself

$$
\begin{array}{ccccccccccc}
B= & y & x & y & y & x & y & x & y & x & x \\
& x & \cdot & \cdot & \cdot & & & & & & \\
& & x & y & x & \cdot & \cdot & \cdot & & & \\
& & & x & \cdot & \cdot & \cdot & & & & \\
& & & & x & \cdot & \cdot & \cdot & & \\
& & & & & x & y & x & y & y & \\
& & & & & & x & \cdot & \cdot & \cdot & \\
& & & & & & & x & y & x &
\end{array}
$$

Figure 6.21 Matching the pattern against itself.

Source: [Manber 1989].

The Values of next

$i=$	1	2	3	4	5	6	7	8	9	10	11
$B=$	x	y	x	y	y	x	y	x	y	x	x
next $=$	-1	0	0	1	2	0	1	2	3	4	3

Figure 6.22 The values of next.

```
Algorithm String_Match \((A, n, B, m)\);
begin
    \(j:=1 ; \quad i:=1 ;\)
    Start \(:=0\);
    while Start \(=0\) and \(i \leq n\) do
        if \(B[j]=A[i]\) then
            \(j:=j+1 ; \quad i:=i+1\)
        else
            \(j:=n e x t[j]+1 ;\)
            if \(j=0\) then
                \(j:=1 ; \quad i:=i+1 ;\)
        if \(j=m+1\) then Start \(:=i-m\)
end
```


The KMP Algorithm (cont.)

Figure 6.24 Computing next(i).

Source: [Manber 1989].

The KMP Algorithm (cont.)

```
Algorithm Compute_Next \((B, m)\);
begin
    next [1] \(:=-1 ; \quad n e x t[2]:=0 ;\)
    for \(i:=3\) to \(m\) do
        \(j:=n e x t[i-1]+1\);
        while \(B[i-1] \neq B[j]\) and \(j>0\) do
            \(j:=\operatorname{next}[j]+1\);
        \(n e x t[i]:=j\)
end
```


3 String Editing

String Editing

Problem 3. Given two strings $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the minimum number of changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

String Editing (cont.)

Let $C(i, j)$ denote the minimum cost of changing $A(i)$ to $B(j)$, where $A(i)=a_{1} a_{2} \cdots a_{i}$ and $B(j)=$ $b_{1} b_{2} \cdots b_{j}$.

$$
C(i, j)=\min \begin{cases}C(i-1, j)+1 & \left(\text { deleting } a_{i}\right) \\ C(i, j-1)+1 & \left(\text { inserting } b_{j}\right) \\ C(i-1, j-1)+1 & \left(a_{i} \rightarrow b_{j}\right) \\ C(i-1, j-1) & \left(a_{i}=b_{j}\right)\end{cases}
$$

String Editing (cont.)

Figure 6.26 The dependencies of $C(i, j)$.

Source: [Manber 1989].

String Editing (cont.)

```
Algorithm Minimum_Edit_Distance \((A, n, B, m)\);
    for \(i:=0\) to \(n\) do \(C[i, 0]:=i\);
    for \(j:=1\) to \(m\) do \(C[0, j]:=j\);
    for \(i:=1\) to \(n\) do
        for \(j:=1\) to \(m\) do
        \(x:=C[i-1, j]+1 ;\)
        \(y:=C[i, j-1]+1\);
        if \(a_{i}=b_{j}\) then
            \(z:=C[i-1, j-1]\)
            else
                    \(z:=C[i-1, j-1]+1 ;\)
        \(C[i, j]:=\min (x, y, z)\)
```

