
Algorithms 2017: String Processing

(Based on [Manber 1989])

Yih-Kuen Tsay

1 Data Compression

Data Compression

Problem 1. Given a text (a sequence of characters), find an encoding for the characters that satisfies the
prefix constraint and that minimizes the total number of bits needed to encode the text.

The prefix constraint states that the prefixes of an encoding of one character must not be equal to a
complete encoding of another character.

Denote the characters by c1, c2, · · · , cn and their frequencies by f1, f2, · · · , fn. Given an encoding E in
which a bit string si represents ci, the length (number of bits) of the text encoded by using E is

∑n
i=1 |si| ·fi.

A Code Tree

Source: [Manber 1989].

A Huffman Tree

1

Source: [Manber 1989].

Huffman Encoding

Algorithm Huffman Encoding (S, f);
insert all characters into a heap H

according to their frequencies;
while H not empty do

if H contains only one character X then
make X the root of T

else
delete X and Y with lowest frequencies;

from H;
create Z with a frequency equal to the

sum of the frequencies of X and Y ;
insert Z into H;
make X and Y children of Z in T

2 String Matching

String Matching

Problem 2. Given two strings A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the first occurrence (if any) of
B in A. In other words, find the smallest k such that, for all i, 1 ≤ i ≤ m, we have ak−1+i = bi.

A substring of a string A is a consecutive sequence of characters aiai+1 · · · aj from A.

Straightforward String Matching

2

Source: [Manber 1989].

Matching Against Itself

Source: [Manber 1989].

The Values of next

Source: [Manber 1989].

3

The KMP Algorithm

Algorithm String Match (A,n,B,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i + 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i + 1;
if j = m + 1 then Start := i−m

end

The KMP Algorithm (cont.)

Source: [Manber 1989].

The KMP Algorithm (cont.)

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

3 String Editing

String Editing

Problem 3. Given two strings A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the minimum number of
changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

4

String Editing (cont.)
Let C(i, j) denote the minimum cost of changing A(i) to B(j), where A(i) = a1a2 · · · ai and B(j) =

b1b2 · · · bj .

C(i, j) = min


C(i− 1, j) + 1 (deleting ai)
C(i, j − 1) + 1 (inserting bj)
C(i− 1, j − 1) + 1 (ai → bj)
C(i− 1, j − 1) (ai = bj)

String Editing (cont.)

Source: [Manber 1989].

String Editing (cont.)

Algorithm Minimum Edit Distance (A,n,B,m);
for i := 0 to n do C[i, 0] := i;
for j := 1 to m do C[0, j] := j;
for i := 1 to n do

for j := 1 to m do
x := C[i− 1, j] + 1;
y := C[i, j − 1] + 1;
if ai = bj then

z := C[i− 1, j − 1]
else

z := C[i− 1, j − 1] + 1;
C[i, j] := min(x, y, z)

5

