Algorithms 2017: Basic Graph Algorithms

(Based on [Manber 1989])

Yih-Kuen Tsay

1 Introduction

The Konigsberg Bridges Problem

Figure 7.1 The Konigsberg bridges problem.

Source: [Manber 1989].
Can one start from one of the lands, cross every bridge exactly once, and return to the origin?

The Konigsberg Bridges Problem (cont.)

Figure 7.2 The graph corresponding to the Konigsberg bridges problem.

Source: [Manber 1989].

Graphs

e A graph consists of a set of vertices (or nodes) and a set of edges (or links, each normally connecting
two vertices).

e A graph is commonly denoted as G(V, E), where

— @ is the name of the graph,
— V is the set of vertices, and

— F is the set of edges.

Modeling with Graphs

o Reachability

— Finding program errors

— Solving sliding tile puzzles
e Shortest Paths

— Finding the fastest route to a place

— Routing messages in networks
e Graph Coloring

— Coloring maps

— Scheduling classes

Graphs (cont.)
e Undirected vs. Directed Graph
e Simple Graph vs. Multigraph
e Path, Simple Path, Trail
e Circuit, Cycle
e Degree, In-Degree, Out-Degree
e Connected Graph, Connected Components
e Tree, Forest
e Subgraph, Induced Subgraph
e Spanning Tree, Spanning Forest

e Weighted Graph

Eulerian Graphs

Problem 1. Given an undirected connected graph G = (V, E) such that all the vertices have even degrees,

find a circuit P such that each edge of E appears in P exactly once.
The circuit P in the problem statement is called an Fulerian circuit.

Theorem 2. An undirected connected graph has an Eulerian circuit
even degrees.

2 Depth-First Search

Depth-First Search

S

Figure 7.4 A DFS for an undirected graph.

Source: [Manber 1989].

all of its vertices have

Depth-First Search (cont.)

Algorithm Depth_First_Search(G,v);
begin
mark v;
perform on v;
for all edges (v,w) do
if w is unmarked then
Depth_First_Search(G,w);
perform for (v, w)
end

Depth-First Search (cont.)

Algorithm Refined_DFS(G,v);
begin
mark v;
perform on v;
for all edges (v, w) do
if w is unmarked then
Refined_DFS(G,w);
perform for (v, w);
perform on v
end

Connected Components

Algorithm Connected_Components(G);
begin
Component_Number := 1;
while there is an unmarked vertex v do
Depth_First_Search(G,v)
(:
v.Component := Component_Number);
Component_Number := Component_Number + 1
end

DFS Numbers

Algorithm DFS _Numbering(G, v);
begin

DFS_Number := 1;
Depth_First_Search(G,v)
(:
v.DFS := DFS_Number;
DFS_Number := DFS_Number + 1)
end

The DFS Tree

Algorithm Build_DFS_Tree(G,v);
begin
Depth_First_Search(G,v)
(:
if w was unmarked then
add the edge (v, w) to T);
end

The DFS Tree (cont.)

Figure 7.9 A DFS tree for a directed graph.
Source: [Manber 1989].

The DFS Tree (cont.)

Lemma 3 (7.2). For an undirected graph G = (V, E), every edge e € E either belongs to the DF'S tree T,
or connects two vertices of G, one of which is the ancestor of the other in T.

For undirected graphs, DFS avoids cross edges.

Lemma 4 (7.3). For a directed graph G = (V, E), if (v,w) is an edge in E such that v.DFS_Number <
w.DFS_Number, then w is a descendant of v in the DF'S tree T.

For directed graphs, cross edges must go “from right to left”.
Directed Cycles

Problem 5. Given a directed graph G = (V, E), determine whether it contains a (directed) cycle.

Lemma 6 (7.4). G contains a directed cycle if and only if G contains a back edge (relative to the DFS
tree).

Directed Cycles (cont.)

Algorithm Find_a_Cycle(G);

begin

Depth_First_Search(G,v) /* arbitrary v */
(.

v.on_the_path := true;

if w.on_the_path then
Find_a_Cycle := true;
halt;
if w is the last vertex on v’s list then
v.on_the_path := false;)
end

Directed Cycles (cont.)

Algorithm Refined_Find_a_Cycle(G);
begin
Refined_DFS(G,v) /* arbitrary v */
(:
v.on_the_path := true;
if w.on_the_path then
Refined_Find_a_Cycle := true;
halt;

v.on_the_path := false)
end

3 Breadth-First Search

Breadth-First Search

Figure 7.12 A BFS tree for a directed graph.

Source: [Manber 1989].

Breadth-First Search (cont.)

Algorithm Breadth_First_Search(G, v);
begin
mark v;
put v in a queue;
while the queue is not empty do
remove vertex w from the queue;

perform on w;
for all edges (w, z) with z unmarked do
mark x;

add (w,z) to the BF'S tree T}
put z in the queue
end

Breadth-First Search (cont.)

Lemma 7 (7.5). If an edge (u,w) belongs to a BF'S tree such that u is a parent of w, then u has the minimal
BF'S number among vertices with edges leading to w.

Lemma 8 (7.6). For each vertex w, the path from the root to w in T is a shortest path from the root to w
in G.

Lemma 9 (7.7). If an edge (v,w) in E does not belong to T and w is on a larger level, then the level
numbers of w and v differ by at most 1.

Breadth-First Search (cont.)

Algorithm Simple BFS(G,v);
begin
put v in Queue;
while Queue is not empty do
remove vertex w from Queue;
if w is unmarked then
mark w;
perform on w;
for all edges (w, z) with unmarked do
put x in Queue
end

Breadth-First Search (cont.)

Algorithm Simple Nonrecursive_ DFS(G,v);
begin
push v to Stack;
while Stack is not empty do
pop vertex w from Stack;
if w is unmarked then
mark w;
perform on w;
for all edges (w, z) with unmarked do
push z to Stack
end

4 Topological Sorting

Topological Sorting

Problem 10. Given a directed acyclic graph G = (V, E) with n vertices, label the vertices from 1 to n such
that, if v is labeled k, then all vertices that can be reached from v by a directed path are labeled with labels
> k.

Lemma 11 (7.8). A directed acyclic graph always contains a vertex with indegree 0.

Topological Sorting (cont.)

Algorithm Topological Sorting(G);
initialize v.indegree for all vertices; /* by DFS */
G_label := 0;
for : := 1 ton do
if v;.indegree = 0 then put v; in Queue;
repeat
remove vertex v from Queue;
G_label := G_label + 1;
v.label = G_label,
for all edges (v, w) do
w.indegree := w.indegree — 1;
if w.indegree = 0 then put w in Queue
until Queue is empty

5 Shortest Paths

Single-Source Shortest Paths

Problem 12. Given a directed graph G = (V, E) and a vertex v, find shortest paths from v to all other
vertices of G.

Shorted Paths: The Acyclic Case

Algorithm Acyclic_Shortest_Paths(G,v,n);
{Initially, w.SP = oo, for every node w.}
{A topological sort has been performed on G, ...}
begin
let z be the vertex labeled n;
if z # v then
Acyclic_Shortest_Paths(G — z,v,n — 1);
for all w such that (w,z) € F do
if w.SP + length(w,z) < z.SP then
2.8P := w.SP + length(w, z)
else v.5P :=0
end

The Acyclic Case (cont.)

Algorithm Imp_Acyclic_Shortest_Paths(G,v);
for all vertices w do w.SP := oo;
initialize v.indegree for all vertices;
for i :=1tondo
if v;.indegree = 0 then put v; in Queue;
v.SP = 0;
repeat
remove vertex w from Queue;
for all edges (w, z) do
if w.SP + length(w, z) < z.SP then
z.8P := w.SP + length(w, 2);
z.andegree := z.indegree — 1;
if z.indegree = 0 then put z in Queue
until Queue is empty

Shortest Paths: The General Case

Algorithm Single_Source_Shortest_Paths(G, v);
begin
for all vertices w do
w.mark := false;
w.SP = 00;
v.SP = 0;
while there exists an unmarked vertex do
let w be an unmarked vertex s.t. w.SP is minimal,;
w.mark := true;
for all edges (w, z) such that z is unmarked do
if w.SP + length(w,z) < z.SP then
2.SP := w.SP + length(w, z)
end

The General Case (cont.)

a 1 4 3 b

Figure 7.18 An example of the single-source shortest-paths algorithm.

Source: [Manber 1989].

6 Minimum-Weight Spanning Trees

Minimum-Weight Spanning Trees

Problem 13. Given an undirected connected weighted graph G = (V, E), find a spanning tree T of G of
minimum weight.

Theorem 14. Let Vi and Vo be a partition of V and E(V1,V3) be the set of edges connecting nodes in Vi
to nodes in Vo. The edge with the minimum weight in E(V1,V3) must be in the minimum-cost spanning tree

of G.

Minimum-Weight Spanning Trees (cont.)

If cost(u,v) is the smallest among E(V7, Va), then {u,v} must be in the minimum spanning tree.

10

Minimum-Weight Spanning Trees (cont.)

rm———— ey []

2 .

Figure 7.19 Finding the next edge of the MCST.

Source: [Manber 1989].

Minimum-Weight Spanning Trees (cont.)

Algorithm MST(G);
begin
initially T is the empty set;
for all vertices w do
w.mark := false; w.cost := oo;
let (z,y) be a minimum cost edge in G|
x.mark := true;
for all edges (z,z) do
z.edge := (x,2); z.cost := cost(x, z);

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost = oo then
print “G is not connected”; halt
else
w.mark := true;
add w.edge to T
for all edges (w, z) do
if not z.mark then
if cost(w, z) < z.cost then
z.edge := (w, z); z.cost := cost(w, 2)
end

11

Minimum-Weight Spanning Trees (cont.)

Algorithm Another MST(G);
begin
initially T is the empty set;
for all vertices w do
w.mark := false; w.cost := oo;
x.mark = true; /* x is an arbitrary vertex */
for all edges (z,z) do
z.edge := (x,2); z.cost := cost(z, 2);

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost = co then
print “G is not connected”; halt
else
w.mark := true;
add w.edge to T}
for all edges (w, z) do
if not z.mark then
if cost(w, z) < z.cost then
z.edge := (w, 2);
z.cost := cost(w, 2)
end

Minimum-Weight Spanning Trees (cont.)

Source: [Manber 1989].

®
2 9 3
Ce 4 4 ‘:"
d |
10 12 |5
|
. S
f 13 g 11 h
v | a b & d e ' f | s h
v [[vO] = [vO] = | = [= | =
(a | - | - v(6) | a2y | v L;’” | .
P g v (6) L o4 o | c(10) | e | e |
T e — @y [eqoy a0 | =
8 S T S T3 [et ; d(12) [e |
i 1 T - c(10) | d(12) | e(5)
I - T AL T - |
h - M AUV UGN
- I - | - a(ll)y | -

Figure 7.21 An example of the minimum-cost spanning-tree algorithm.

12

7 All Shortest Paths

All Shortest Paths

Problem 15. Given a weighted graph G = (V, E) (directed or undirected) with nonnegative weights, find
the minimum-length paths between all pairs of vertices.

Floyd’s Algorithm

Algorithm All_Pairs_Shortest_Paths(W);
begin
{initialization}
for i := 1ton do
for j :=1tondo
if (i,7) € E then Wi, j] := length(s, j)
else Wi, j] := oo;
for i := 1 to n do Wi,] := 0;

for m := 1 to n do {the induction sequence}
for x :=1ton do
for y :=1tondo
if Wiz, m]+ W[m,y] < W]z,y] then
Wiz, y] := Wiz, m] + W[m, y]
end

Transitive Closure

Problem 16. Given a directed graph G = (V, E), find its transitive closure.

Algorithm Transitive_Closure(A);
begin

{initialization omitted}

for m :=1ton do

for x :=1ton do
for y :=1ton do
if A[z,m] and A[m,y| then
Alz,y| := true

end

Transitive Closure (cont.)

Algorithm Improved_Transitive_Closure(A);
begin

{initialization omitted}

for m :=1ton do

for x :=1ton do
if A[z,m] then
for y :=1ton do
if Alm,y] then
Alx,y] == true

end

13

