NP-Completeness (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

P vs. NP

- P denotes the class of all problems that can be solved by deterministic algorithms in polynomial time.
- NP denotes the class of all problems that can be solved by nondeterministic algorithms in polynomial time.
- A nondeterministic algorithm, when faced with a choice of several options, has the power to guess the right one (if there is any).
We will focus on decision problems, whose answer is either yes or no.

Decision as Language Recognition

- A decision problem can be viewed as a language-recognition problem.Let U be the set of all possible inputs to the decision problem and $L \subseteq U$ be the set of all inputs for which the answer to the problem is yes.
We call L the language corresponding to the problem.
- The decision problem is to recognize whether a given input belongs to L.

Polynomial-Time Reductions

Let L_{1} and L_{2} be two languages from the input spaces U_{1} and U_{2}.
We say that L_{1} is polynomially reducible to L_{2} if there exists a conversion algorithm $A C$ satisfying the following conditions:

1. $A C$ runs in polynomial time (deterministically).
2. $u_{1} \in L_{1}$ if and only if $A C\left(u_{1}\right)=u_{2} \in L_{2}$.

Polynomial-Time Reductions (cont.)

Theorem (11.1)

If L_{1} is polynomially reducible to L_{2} and there is a polynomial-time algorithm for L_{2}, then there is a polynomial-time algorithm for L_{1}.

Theorem (11.2: transitivity)

If L_{1} is polynomially reducible to L_{2} and L_{2} is polynomially reducible to L_{3}, then L_{1} is polynomially reducible to L_{3}.

NP-Completeness

A problem X is called an NP-hard problem if every problem in NP is polynomially reducible to X.
A problem X is called an NP-complete problem if (1) X belongs to NP, and (2) X is NP-hard.

Lemma (11.3)

A problem X is an NP-complete problem if (1) X belongs to NP, and ${ }^{(2}$) Y is polynomially reducible to X, for some NP-complete problem Y.

- If there exists an efficient (polynomial-time) algorithm for any NP-complete problem, then there exist efficient algorithms for all NP-complete (and hence all NP) problems.

The Satisfiability Problem (SAT)

Problem

Given a Boolean expression in conjunctive normal form, determine whether it is satisfiable.

A Boolean expression is in conjunctive normal form (CNF) if it is the product of several sums, e.g., $(x+y+\bar{z}) \cdot(\bar{x}+y+z) \cdot(\bar{x}+\bar{y}+\bar{z})$.

- A Boolean expression is said to be satisfiable if there exists an assignment of $0 s$ and $1 s$ to its variables such that the value of the expression is 1 .

SAT (cont.)

Theorem (Cook's Theorem)

The SAT problem is NP-complete.

- This is our starting point for showing the NP-completeness of some other problems.
- Their NP-hardness will be proved by reduction directly or indirectly from SAT.

NP-Complete Problems

Figure 11.1 The order of NP-completeness proofs in the text.

Source: [Manber 1989].

Vertex Cover

Problem

Given an undirected graph $G=(V, E)$ and an integer k, determine whether G has a vertex cover containing $\leq k$ vertices.

A vertex cover of G is a set of vertices such that every edge in G is incident to at least one of these vertices.

Theorem (11.4)

The vertex-cover problem is NP-complete.
Main idea: by reduction from the clique problem.

Vertex Cover (cont.)

Proof outline:
The vertex-cover problem is in NP, since given a graph we can guess a subset of vertices and check whether it contains $\leq k$ vertices and is indeed a vertex cover in ploynomial time.
The clique problem, which is NP-complete, is polynomially reducible to the vertex-cover problem.
Let $G(V, E)$ and k represent an arbitrary instance of the clique problem.

- Let $\bar{G}(V, \bar{E})$ be the complement of G; computing the complement of a graph takes only polynomial time.
. Claim: G has a clique of size $\geq k$ iff \bar{G} has a vertex cover of size $\leq|V|-k$.

Dominating Set

Problem

Given an undirected graph $G=(V, E)$ and an integer k, determine whether G has a dominating set containing $\leq k$ vertices.

A dominating set D is a set of vertices such that every vertex of G is either in D or is adjacent to some vertex in D.

Theorem (11.5)

The dominating-set problem is NP-complete.
By reduction from the vertex-cover problem.

Dominating Set (cont.)

Figure 11.2 The dominating-set reduction.

Source: [Manber 1989].

3SAT

Problem

Given a Boolean expression in CNF such that each clause contains exactly three variables, determine whether it is satisfiable.

Theorem (11.6)

The 3SAT problem is NP-complete.

By reduction from the regular SAT problem.

3SAT (cont.)

From an arbitrary clause $\left(x_{1}+x_{2}+\cdots+x_{k}\right)$, where $k \neq 3$, of the 3SAT problem to clauses of the SAT problem:
When $k \geq 4$,

$$
\begin{aligned}
& \left(x_{1}+x_{2}+y_{1}\right) . \\
& \left(x_{3}+\overline{y_{1}}+y_{2}\right) . \\
& \left(x_{4}+\overline{y_{2}}+y_{3}\right) .
\end{aligned}
$$

$$
\left(x_{k-2}+\overline{y_{k-4}}+y_{k-3}\right) .
$$

$$
\left(x_{k-1}+x_{k}+\overline{y_{k-3}}\right)
$$

* When $k=2$,

$$
\left(x_{1}+x_{2}+w\right) \cdot\left(x_{1}+x_{2}+\bar{w}\right)
$$

When $k=1$,

$$
\left(x_{1}+y+z\right) \cdot\left(x_{1}+\bar{y}+z\right) \cdot\left(x_{1}+y+\bar{z}\right) \cdot\left(x_{1}+\bar{y}+\bar{z}\right)
$$

Clique

Problem

Given an undirected graph $G=(V, E)$ and an integer k, determine whether G contains a clique of size $\geq k$.

A clique C is a subgraph of G such that all vertices in C are adjacent to all other vertices in C.

Theorem (11.7)
The clique problem is NP-complete.
By reduction from the SAT problem.

Clique (cont.)

Figure 11.3 An example of the clique reduction for the expression

$$
(x+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z) \cdot(y+\bar{z})
$$

Source: [Manber 1989].

3-Coloring

Problem

Given an undirected graph $G=(V, E)$, determine whether G can be colored with three colors.

Theorem (11.8)
The 3-coloring problem is NP-complete.
By reduction from the 3SAT problem.

3-Coloring (cont.)

Figure 11.4 The first part of the construction in the reduction of 3SAT to 3-coloring.

Source: [Manber 1989].

3-Coloring (cont.)

Figure 11.5 The subgraphs corresponding to the clauses in the reduction of 3SAT to 3coloring.

Source: [Manber 1989].

3-Coloring (cont.)

Figure 11.6 The graph corresponding to $(\bar{x}+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z)$.

Source: [Manber 1989].

More NP-Complete Problems

- Independent set:

An independent set in an undirected graph is a set of vertices no two of which are adjacent. The problem is to determine, given a graph G and an integer k, whether G contains an independent set with $\geq k$ vertices.

- Hamiltonian cycle:

A Hamiltonian cycle in a graph is a (simple) cycle that contains each vertex exactly once. The problem is to determine whether a given graph contains a Hamiltonian cycle.

More NP-Complete Problems (cont.)

Travelling salesman:
The input includes a set of cities, the distances between all pairs of cities, and a number D. The problem is to determine whether there exists a (travelling-salesman) tour of all the cities having total length $\leq D$.

- Partition:

The input is a set X where each element $x \in X$ has an associated size $s(x)$. The problem is to determine whether it is possible to partition the set into two subsets with exactly the same total size.

More NP-Complete Problems (cont.)

Knapsack:
The input is a set X, where each element $x \in X$ has an associated size $s(x)$ and value $v(x)$, and two other numbers S and V. The problem is to determine whether there is a subset $B \subseteq X$ whose total size is $\leq S$ and whose total value is $\geq V$.
Bin packing:
The input is a set of numbers $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ and two other numbers b and k. The problem is to determine whether the set can be partition into k subsets such that the sum of numbers in each subset is $\leq b$.

