

Searching and Sorting (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-45-0) Algorithms 2018 1/38

- Br

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Searching a Sorted Sequence

Problem

Let x_1, x_2, \dots, x_n be a sequence of real numbers such that $x_1 \leq x_2 \leq \cdots \leq x_n$. Given a real number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that $x_i = z$.

KED KARD KED KED E VOOR

Searching a Sorted Sequence

Problem

Let x_1, x_2, \dots, x_n be a sequence of real numbers such that $x_1 \leq x_2 \leq \cdots \leq x_n$. Given a real number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that $x_i = z$.

Idea: cut the search space in half by asking only one question.

$$
\begin{cases}\nT(1) = O(1) \\
T(n) = T(\frac{n}{2}) + O(1), n \ge 2\n\end{cases}
$$

Time complexity: $O(\log n)$ (applying the master theorem with $a = 1$, $b = 2, k = 0$, and $b^k = 1 = a$).

KOD KARD KED KED B YOUR

Binary Search

function Find $(z, \text{Left}, \text{Right})$: integer; begin

```
if Left = Right then
   if X[Left] = z then Find := Leftelse Find := 0else
    Middle := \lceil \frac{\text{Left} + \text{Right}}{2} \rceil\frac{1}{2} \left. \frac{1}{2} \right| ;
   if z < X[Middle] then
```

```
Find := Find(z, Left, Middle - 1)
```
else

$$
Find := Find(z, Middle, Right)
$$

end

KOD KARD KED KED E VAN

Binary Search (cont.)

Algorithm Binary Search (X, n, z) ; begin Position := $Find(z, 1, n)$; end

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ \equiv \cap α Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 4 / 38

Searching a Cyclically Sorted Sequence

Problem

Given a cyclically sorted list, find the position of the minimal element in the list (we assume, for simplicity, that this position is unique).

C Example 1: 1 2 3 4 5 6 7 8 [5 6 7 0 1 2 3 4] The 4th is the minimal element. **C** Example 2: 1 2 3 4 5 6 7 8 [0 1 2 3 4 5 6 7] The 1st is the minimal element.

イロト イ押ト イヨト イヨト \equiv \cap α Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 5 / 38

Searching a Cyclically Sorted Sequence

Problem

Given a cyclically sorted list, find the position of the minimal element in the list (we assume, for simplicity, that this position is unique).

C Example 1: 1 2 3 4 5 6 7 8 [5 6 7 0 1 2 3 4] $*$ **The 4th is the minimal element. C** Example 2: 1 2 3 4 5 6 7 8 [0 1 2 3 4 5 6 7] The 1st is the minimal element.

To cut the search space in half, what question should we ask?

KOD KARD KED KED E VAN

Cyclic Binary Search

Algorithm Cyclic Binary Search (X, n) ; begin

```
Position := Cyclic Find(1, n);
```
end

function Cyclic_Find $(Left, Right)$: integer; begin

if
$$
Left = Right
$$
 then $Cyclic_Find := Left$
else

$$
\begin{array}{ll}\n\text{Middle} &:= \lfloor \frac{\text{Left} + \text{Right}}{2} \rfloor; \\
\text{if } X[\text{Middle}] < X[\text{Right}] \text{ then} \\
&\text{Cyclic} - \text{Find} &:= \text{Cyclic} - \text{Find}(\text{Left}, \text{Middle}) \\
\text{else}\n\end{array}
$$

$$
\mathit{Cyclic_Find} := \mathit{Cyclic_Find}(\mathit{Middle} + 1, \mathit{Right})
$$

end

"Fixpoints"

Problem

Given a sorted sequence of distinct integers a_1, a_2, \dots, a_n , determine whether there exists an index i such that $a_i = i$.

KED KARD KED KED E VOOR

"Fixpoints"

Problem

Given a sorted sequence of distinct integers a_1, a_2, \dots, a_n , determine whether there exists an index i such that $a_i = i$.

Again, can we cut the search space in half by asking only one question?

KOD KARD KED KED B YOUR

A Special Binary Search

function Special Find $(Left, Right)$: integer; begin

```
if Left = Right then
             if A[Left] = Left then Special Find := Left
             else Special Find := 0else
                  Middle := \lfloor \frac{\text{Left} + \text{Right}}{2} \rfloor\frac{1}{2} \frac{1}{2} if A[Midd] < Middle then
                      Special Find := Special Find(Middle +1, Right)
                 else
                      Special Find := Special Find(Left, Middle)
end
```
Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 8 / 38

 $=$ Ω

メロメ メ都 メメ きょくきょ

A Special Binary Search (cont.)

Algorithm Special Binary Search (A, n) ; begin Position := Special_Find $(1, n)$; end

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ - 30 Ω Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 9 / 38

Stuttering Subsequence

Problem

Given two sequences A and B, find the maximal value of i such that B^i is a subsequence of A.

• If
$$
B = xyzzx
$$
, then $B^2 = xxyyzzzzxx$, $B^3 = xxxyyyzzzzzzxxx$, etc.

- \bigcirc B is a subsequence of A if we can embed B inside A in the same order but with possible holes.
- For example, $B^2 = xxyyzzzxx$ is a subsequence of xxzzyyyyxxzzzzzxxx.

 $=$ Ω

Interpolation Search

Figure 6.4 Interpolation search.

Source: [Manber 1989].

4 日下

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$ 目 QQ Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 11 / 38

Interpolation Search (cont.)

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 12 / 38

 200

 \equiv

Interpolation Search (cont.)

function Int -Find $(z, Left, Right)$: integer; begin

\n
$$
X[\text{Left}] = z
$$
\n then\n $\text{Int} \cdot \text{Find} := \text{Left}$ \n else\n if\n $\text{Left} = \text{Right} \text{ or } X[\text{Left}] = X[\text{Right}]$ \n then\n $\text{Int} \cdot \text{Find} := 0$ \n

else

Next-Guess :=
$$
\lceil \text{Left} + \frac{(z - X[\text{Left}]) (Right - \text{Left}]}{X[\text{Right}] - X[\text{Left}]} \rceil;
$$
if $z < X[\text{Next} - \text{Guess}]$ then
$$
\text{Int} \text{ Find} := \text{Int} \text{ Find} (z, \text{Left}, \text{Next} - \text{Guess} - 1)
$$
else
$$
\text{Int} \text{ Find} := \text{Int} \text{ Find} (z, \text{Next} - \text{Guess}, \text{Right})
$$

end

 $=$ Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Interpolation Search (cont.)

Algorithm Interpolation Search (X, n, z) ; begin

```
if z < X[1] or z > X[n] then Position := 0
    else Position := Int\_Find(z, 1, n);end
```
 $=$ Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Sorting

Problem

Given n numbers x_1, x_2, \cdots, x_n , arrange them in increasing order. In other words, find a sequence of distinct indices $1 \leq i_1, i_2, \cdots, i_n \leq n$, such that $x_{i_1} \leq x_{i_2} \leq \cdots \leq x_{i_n}$.

A sorting algorithm is called **in-place** if no additional work space is used besides the initial array that holds the elements.

KED KARD KED KED E VOOR

Using Balanced Search Trees

- **Balanced search trees, such as AVL trees, may be used for** sorting:
	- 1. Create an empty tree.
	- 2. Insert the numbers one by one to the tree.
	- 3. Traverse the tree and output the numbers.

 Ω

イロト イ母 トイヨ トイヨト

Using Balanced Search Trees

- **Balanced search trees, such as AVL trees, may be used for** sorting:
	- 1. Create an empty tree.
	- 2. Insert the numbers one by one to the tree.
	- 3. Traverse the tree and output the numbers.

What's the time complexity? Suppose we use an AVL tree.

 Ω

医骨盆 医骨

K ロ ▶ K 何 ▶

Radix Sort

Algorithm Straight Radix (X, n, k) ; begin

```
put all elements of X in a queue GQ;
   for i := 1 to d do
       initialize queue Q[i] to be empty
   for i = k downto 1 do
       while GQ is not empty do
              pop x from GQ;
              d := the i-th digit of x;
              insert x into Q[d];
       for t := 1 to d do
           insert Q[t] into GQ;
   for i := 1 to n do
       pop X[i] from GQend
```
イロト イ押ト イヨト イヨト $=$ Ω Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 17 / 38

Merge Sort


```
Algorithm Mergesort (X, n);
begin M_Sort(1, n) end
```

```
procedure M_Sort (Left, Right);
begin
```
if $Right - Left = 1$ then if $X[Left] > X[Right]$ then swap(X[Left], X[Right]) else if $Left \neq Right$ then Middle := $\lceil \frac{1}{2} \rceil$ $\frac{1}{2}$ (Left + Right)]; $M_Sort(Left, Middle-1);$ M_Sort(Middle, Right);

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 18 / 38

KOD KARD KED KED B YOUR

Merge Sort (cont.)

 $i :=$ Left; $i :=$ Middle; $k := 0$; while ($i \leq M$ iddle – 1) and ($i \leq R$ ight) do $k := k + 1$: if $X[i] \leq X[i]$ then $\mathcal{TEMP}[k] := X[i]; \ \ i := i + 1$ else $\overline{TEMP}[k] := X[i]; \ \ i := j + 1;$ if $i >$ Right then for $t = 0$ to Middle $-1 - i$ do $X[Right - t] := X[Midd]e - 1 - t$ for $t := 0$ to $k - 1$ do $X[Left + t] := \text{TEMP}[t]$

end

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 19 / 38

KOD KARD KED KED B YOUR

Merge Sort (cont.)

Figure 6.8 An example of mergesort. The first row is in the initial order. Each row illustrates either an exchange operation or a merge. The numbers that are involved in the current operation are circled.

Source: [Manber 1989].

イロト イ母 トイミト イミト ニヨー りんぴ Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 20 / 38

Quick Sort

Algorithm Quicksort (X, n) ; begin $Q_Sort(1, n)$ end

procedure Q_Sort (Left, Right); begin

if Left \langle Right then $Partition(X, Left, Right);$ Q ₋Sort(Left, Middle -1); Q ₋Sort(Middle $+1$, Right) end

- 3

 Ω

Quick Sort (cont.)

Algorithm Partition $(X, \text{Left}, \text{Right})$; begin

```
pivot := X[left];
L := Let: R := Right:
while I < R do
      while X[L] < pivot and L \leq Right do L := L + 1;
      while X[R] > pivot and R \geq Let do R := R - 1;
      if L < R then swap(X[L], X[R]);
Middle := R \cdotswap(X[Left], X[Middle])
```
end

KOD KARD KED KED B YOUR

Quick Sort (cont.)

Figure 6.10 Partition of an array around the pivot 6.

Source: [Manber 1989].

イロト イ母 トイミト イミト ニヨー りんぴ Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 23 / 38

Quick Sort (cont.)

6	\overline{c}	8	5	10	9	12	1	15	7	3	13	4	11	16	14
1	\overline{c}	$\overline{4}$	5	3	6	12	9	15	7	10	13	8	11	16	14
(1)	$\overline{\mathbf{c}}$	4	5	3	6	12	9	15	7	10	13	8	11	16	14
$\left(1\right)$	\overline{c}	$\overline{4}$	5	3	6	12	9	15	7	10	13	8	11	16	14
(1)	$\overline{2}$	3	$\overline{4}$	5	6	12	9	15	7	10	13	8	11	16	14
(1)	$\overline{2}$	3	$\overline{4}$	5	6°	8	9	11	7	10	12	13	15	16	14
$\left(1\right)$	$\overline{2}$	3	$\overline{4}$	5	6	7	8	11	9	10	$\left[12\right]$	13	15	16	14
(1)	$\overline{2}$	3	$\overline{\mathbf{4}}$	5	6	7	$\sqrt{8}$	10	9	(11)	$\left[12\right]$	13	15	16	14
(1)	2°	3	4 ²	5	6	$\overline{7}$	$^{\circ}8$	9	[10]	(11)	$\left[12\right]$	13	15	16	14
$\left(1\right)$	$\overline{2}$	3	$\overline{4}$	5	6	7	$\sqrt{8}$	9	(10)	(11)	$^{[12]}$	(13)	15	16	14
(1)	\overline{c}	3	$\overline{4}$	5	6 ²	$\overline{7}$	$\overline{\mathbf{8}}$	9	(10)	(11)	$\left(12\right)$	(13)	14	15	16

Figure 6.12 An example of quicksort. The first line is the initial input. A new pivot is selected in each line. The pivots are circled. When a single number appears between two pivots it is obviously in the right position.

Source: [Manber 1989].

イロト イ母 トイミト イミト ニヨー りんぴ Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 24 / 38

Average-Case Complexity of Quick Sort

 \bigcirc When $X[i]$ is selected (at random) as the pivot,

$$
T(n) = n-1+T(i-1)+T(n-i),
$$
 where $n \ge 2$.

イロト イ部 トイヨ トイヨト Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 25 / 38

 $=$ Ω

Average-Case Complexity of Quick Sort

 \bigcirc When $X[i]$ is selected (at random) as the pivot,

$$
T(n) = n-1+T(i-1)+T(n-i),
$$
 where $n \ge 2$.

The average running time will then be

$$
T(n) = n - 1 + \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i))
$$

= $n - 1 + \frac{1}{n} \sum_{i=1}^{n} T(i-1) + \frac{1}{n} \sum_{i=1}^{n} T(n-i)$
= $n - 1 + \frac{1}{n} \sum_{j=0}^{n-1} T(j) + \frac{1}{n} \sum_{j=0}^{n-1} T(j)$
= $n - 1 + \frac{2}{n} \sum_{i=0}^{n-1} T(i)$

G Solving this recurrence relation with full history, $T(n) = O(n \log n)$.

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 25 / 38

KOD KARD KED KED E VOOR

Heap Sort

Algorithm Heapsort (A, n) ; begin $Build_Heap(A);$

```
for i := n downto 2 do
   swap(A[1], A[i]);
    Rearrange<sub>-</sub>Heap(i-1)
```
end

 \equiv \cap α

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Heap Sort (cont.)

procedure Rearrange Heap (k) ; begin

```
parent := 1;
child := 2;
while child \leq k-1 do
      if A[child] < A[child + 1] then
         child = child + 1;
      if A[child] > A[parent] then
        swap(A[parent], A[child]);
         parent := child;child := 2 * childelse child = k
```
end

KED KARD KED KED E VOOR

Heap Sort (cont.)

Figure 6.14 Top down and bottom up heap construction.

Source: [Manber 1989].

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 28 / 38

造

 ORO

イロト イ部 トメ ヨ トメ ヨト

Building a Heap Bottom Up

Figure 6.15 An example of building a heap bottom up. The numbers on top are the indices. The circled numbers are those that have been exchanged on that step.

Source: [Manber 1989] (6 and 2 in the first row should be swapped).

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 29 / 38

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

A Lower Bound for Sorting

- **A** lower bound for a particular problem is a proof that no algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
- **C** Decision trees model computations performed by comparison-based algorithms.

 OQ

イロト イ母 トイヨ トイヨト

A Lower Bound for Sorting

 Ω

- **A** lower bound for a particular problem is a proof that no algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
- **C** Decision trees model computations performed by comparison-based algorithms.

Theorem (Theorem 6.1)

Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 30 / 38

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Order Statistics: Minimum and Maximum

Problem

Find the maximum and minimum elements in a given sequence.

イロト イ母 トイヨ トイヨト 目 Ω Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 31 / 38

Order Statistics: Minimum and Maximum

 Ω

Problem

Find the maximum and minimum elements in a given sequence.

 \bullet The obvious solution requires $(n-1) + (n-2) (= 2n-3)$ comparisons between elements.

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 31 / 38

イロト イ母 トイヨ トイヨト

Order Statistics: Minimum and Maximum

ഹൈ

Problem

Find the maximum and minimum elements in a given sequence.

The obvious solution requires $(n-1) + (n-2) (= 2n-3)$ comparisons between elements.

Can we do better? Which comparisons could have been avoided?

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 31 / 38

イロト イ母 トイヨ トイヨト

Order Statistics: Kth-Smallest

Problem

Given a sequence $S = x_1, x_2, \cdots, x_n$ of elements, and an integer k such that $1 \leq k \leq n$, find the kth-smallest element in S.

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 32 / 38

 \equiv \cap α

Order Statistics: Kth-Smallest (cont.)


```
procedure Select (Left, Right, k);begin
    if Left = Right then
      S^{elect} = I eft
    else Partition(X, Left, Right);let Middle be the output of Partition;
         if Middle - Left +1 \geq k then
           Select(Left, Middle, k)
         else
           Select(Middle + 1, Right, k - (Midde - Left + 1))
```
end

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 33 / 38

 Ω

Order Statistics: Kth-Smallest (cont.)

The nested "if" statement may be simplified:

```
procedure Select (Left, Right, k);
begin
```

```
if Left = Right then
  Select = Left
else Partition(X, Left, Right);let Middle be the output of Partition;
     if Middle > k then
       Select(Left, Middle, k)
     else
       Select(Middle + 1, Right, k)
```
end

 Ω

Order Statistics: Kth-Smallest (cont.)

Algorithm Selection (X, n, k) ; begin if $(k < 1)$ or $(k > n)$ then print "error" else $S := \text{Select}(1, n, k)$ end

Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 35 / 38

- Br

 Ω

Finding a Majority

Problem

Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a *majority* in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.

イロト イ押ト イヨト イヨト - 3 Ω Yih-Kuen Tsay (IM.NTU) [Searching and Sorting](#page-0-0) Algorithms 2018 36 / 38

Finding a Majority (cont.)

Algorithm Majority (X, n) ; begin

$$
C := X[1]; \quad M := 1;
$$
\nfor $i := 2$ to n do

\nif $M = 0$ then

\n
$$
C := X[i]; \quad M := 1
$$
\nelse

\nif $C = X[i]$ then $M := M + 1$

$$
u c = \lambda [t] then W := W +else M := M − 1;
$$

KOD KARD KED KED ORA

Finding a Majority (cont.)

if $M = 0$ then Majority := -1 else

 $Count := 0$: for $i := 1$ to n do if $X[i] = C$ then Count := Count + 1; if Count > $n/2$ then Majority := C else Majority $:= -1$

end

 \equiv \cap α