Algorithms 2018: Advanced Graph Algorithms

(Based on [Manber 1989])

Yih-Kuen Tsay
May 15, 2018

1 Strongly Connected Components

Strongly Connected Components

e A directed graph is strongly connected if there is a directed path from every vertex to every other
vertex.

o A strongly connected component (SCC) is a maximal subset of the vertices such that its induced
subgraph is strongly connected (namely, there is no other subset that contains it and induces a strongly
connected graph).

Strongly Connected Components (cont.)

Figure 7.30 A directed graph and its strongly connected component graph.

Source: [Manber 1989].

Strongly Connected Components (cont.)

Lemma 1 (7.11). Two distinct vertices belong to the same SCC if and only if there is a circuit containing
both of them.

/* An important application of this lemma is that, during a DFS, one vertex will see the other via a back
edge (indicating the existence of a directed cycle). This property will be untilized in the algorithm we will
study later for determining the SCCs of a graph. */

Lemma 2 (7.12). Fach vertex belongs to exactly one SCC.
/* All the SCCs of a graph form a partition of the set of vertices of the graph. */

Strongly Connected Components (cont.)

Figure 7.31 Adding an edge connecting two different strongly connected components.

Source: [Manber 1989].

Strongly Connected Components (cont.)

Figure 7.32 The effect of cross edges.

Source: [Manber 1989].

/* A cross edge may point to a vertex in the same SCC under exploration or another SCC that has already
been identified. */

Strongly Connected Components (cont.)

Algorithm Strongly Connected_Components(G,n);
begin
for every vertex v of G do
v.DFS_Number := 0;
v.component := 0;
Current_Component := 0; DFS_N := n;
while v. DF'S_Number = 0 for some v do
SCC(v)
end

procedure SCC(v);

begin
v.DFS_Number := DFS_N;,
DFS_N := DFS_N —1;
insert v into Stack;
v.high := v.DFS_Number;

Strongly Connected Components (cont.)

for all edges (v,w) do
if w.DFS_Number = 0 then
SCC(w);
v.high := max(v.high,w.high)
else if w.DFS_Number > v.DFS_Number
and w.component = 0 then
v.high := max(v.high,w.DFS_Number)
if v.high = v.DFS_Number then
Current_Component := Current_Component + 1;
repeat
remove z from the top of Stack;
x.component := Current_Component
until z = v
end

Time complexity: O(|E| + |V]).
/* This is essentially the DFS with constant extra work per vertex. */

/* For an arbitrary SCC, the vertex v that is visited first during the DFS will acquire the largest/highest
DFS number among all the vertices in the same SCC. When the recursive call with v as the input is about
to return, v will discover that v.high = v.DFS_Number. */

Strongly Connected Components (cont.)

PR
77 4 3

W oo o 7 7 4w -

[G w10 0 10 10 7 4 |

oo 17 7 4 uoud
o110 10 10 1007 7 oa a1 on1
(@ o ow o007 7w n

Figure 734 An example of computing High values and strongly connected components.
Source: [Manber 1989].

Odd-Length Cycles

Problem 3. Given a directed graph G = (V, E), determine whether it contains a (directed) cycle of odd
length.

e A cycle must reside completely within a strongly connected component (SCC), so we exam each SCC
separately.

e Mark the nodes of an SCC with “even” or “odd” using DFS.

e If we have to mark a node that is already marked in the opposite, then we have found an odd-length
cycle.

2 Biconnected Components
Biconnected Components

e An undirected graph is biconnected if there are at least two vertex-disjoint paths from every vertex to
every other vertex.

e A graph is not biconnected if and only if there is a vertex whose removal disconnects the graph. Such
a vertex is called an articulation point.

o A biconnected component (BCC) is a maximal subset of the edges such that its induced subgraph is
biconnected (namely, there is no other subset that contains it and induces a biconnected graph).

Biconnected Components (cont.)

Figure 7.25 The structure of a nonbiconnected graph.
Source: [Manber 1989].

Biconnected Components (cont.)

Lemma 4 (7.9). Two distinct edges e and f belong to the same BCC if and only if there is a cycle containing
both of them.

Lemma 5 (7.10). Fach edge belongs to exactly one BCC.

Biconnected Components (cont.)

(a) (b)

Figure 7.26 An edge that connects two different biconnected components. (a) The com-
ponents corresponding to the graph of Fig. 7.25 with the articulation points indicated. (b)
The biconnected component tree.

Source: [Manber 1989].

Biconnected Components (cont.)

Figure 7.27 Computing the High values.

Source: [Manber 1989].

Biconnected Components (cont.)

Algorithm Biconnected_Components(G,v,n);

begin
for every vertex w do w.DFS_Number := 0;
DFS_N :=n;
BC(v)

end

procedure BC(v);

begin
v.DFS_Number := DFS_N;,
DFS_N := DFS_N —1;
insert v into Stack;

v.high := v.DFS_Number;

Biconnected Components (cont.)

for all edges (v, w) do
insert (v,w) into Stack;
if w is not the parent of v then
if w.DFS_Number =0 then
BC(w);
if w.high < v.DFS_Number then
remove all edges and vertices
from Stack until v is reached;

insert v back into Stack;
v.high := max(v.high, w.high)
else
v.high := max(v.high,w.DFS_Number)
end

Biconnected Components (cont.)

procedure BC(v);
begin
v.DFS_Number := DFS_N;,
DFS_N := DFS_N —1;
v.high := v.DFS_Number;
for all edges (v,w) do
if w is not the parent of v then
insert (v,w) into Stack;
if w.DFS_Number =0 then
BC(w);
if w.high < v.DFS_Number then
remove all edges from Stack
until (v, w) is reached;
v.high := max(v.high,w.high)
else
v.high := max(v.high,w.DFS_Number)
end

Biconnected Components (cont.)

.
msy

Source: [Manber 1989].

Even-Length Cycles

Problem 6. Given a connected undirected graph G = (V, E), determine whether it contains a cycle of even
length.

Theorem 7. Fvery biconnected graph that has more than one edge and is not merely an odd-length cycle
contains an even-length cycle.

Even-Length Cycles (cont.)

Vi

Vil

Figure 7.35 Finding an even-length cycle.

Source: [Manber 1989].

3 Network Flows
Network Flows

e Consider a directed graph, or network, G = (V, E) with two distinguished vertices: s (the source) with
indegree 0 and ¢ (the sink) with outdegree 0.

e Each edge e in F has an associated positive weight c(e), called the capacity of e.

Network Flows (cont.)

e A flow is a function f on E that satisfies the following two conditions:
1. 0< f(e) < c(e).
2. Zf(u,v) = Zf(v,w), forallv € V. — {s,t}.

e The network flow problem is to maximize the flow f for a given network G.

Network Flows (cont.)

Figure 7.39 Reducing bipartite matching to network flow (the directions of all the
edges are from left to right).

Source: [Manber 1989].

Augmenting Paths

e An augmenting path w.r.t. a given flow f (of a network G) is a directed path from s to ¢ consisting
of edges from G, but not necessarily in the same diretion; each of these edges (v, u) satisfies exactly
one of:

1. (v,u) is in the same direction as it is in G, and f(v,u) < c(v,u). (forward edge)

2. (v,u) is in the opposite direction in G' (namely, (u,v) € E), and f(u,v) > 0. (backward edge)

o If there exists an augmenting path w.r.t. a flow f (f admits an augmenting path), then f is not
maximum.

Augmenting Paths (cont.)

4/3

A :p 5
515 w

Figure 7.40 An example of a network with a (nonmaximum) flow.

Source: [Manber 1989].

Augmenting Paths (cont.)

43
5/5 32 3/3
. 75 v 44 u 77 .
~
6/5 11 41 6/5
515 w

Figure 7.41 The result of augmenting the flow of Fig. 7.40.

Source: [Manber 1989].

Properties of Network Flows

Theorem 8 (Augmenting-Path). A flow f is mazimum if and only if it admits no augmenting path.

A cut is a set of edges that separate s from ¢, or more precisely a set of the form {(v,w) € E |
v € A and w € B}, where B=V — A such that s € A and t € B.

Theorem 9 (Max-Flow Min-Cut). The value of a mazimum flow in a network is equal to the minimum
capacity of a cut.

Properties of Network Flows (cont.)

Theorem 10 (Integral-Flow). If the capacities of all edges in the network are integers, then there is a
maximum flow whose value is an integer.

Residual Graphs

e The residual graph with respect to a network G = (V, E) and a flow f is the network R = (V| F),
where F' consists of all forward and backward edges and their capacities are given as follows:

1. cr(v,w) = c¢(v,w) — f(v,w) if (v,w) is a forward edge and

2. cr(v,w) = f(w,v) if (v,w) is a backward edge.

e An augmenting path is thus a regular directed path from s to ¢ in the residual graph.

10

Residual Graphs (cont.)

Figure 7.42 A bad example of network flow.

Source: [Manber 1989].

11

