
Algorithms 2019: Advanced Graph Algorithms

(Based on [Manber 1989])

Yih-Kuen Tsay

November 25, 2019

1 Strongly Connected Components

Strongly Connected Components

• A directed graph is strongly connected if there is a directed path from every vertex to every other
vertex.

• A strongly connected component (SCC) is a maximal subset of the vertices such that its induced
subgraph is strongly connected (namely, there is no other subset that contains it and induces a strongly
connected graph).

Strongly Connected Components (cont.)

a

b

c

d

e f

g

h

i

Figure: A directed graph and its strongly connected component graph.
Source: redrawn from [Manber 1989, Figure 7.30].

/* The strongly connected component graph (SCC graph) is a directed acyclic graph (DAG). There is an
edge from one SCC to another if in the original graph there is an edge from some vertex in the first SCC to
some vertex in the second SCC. */

Strongly Connected Components (cont.)

Lemma 1 (7.11). Two distinct vertices belong to the same SCC if and only if there is a circuit containing
both of them.

1

/* An important application of this lemma is that, using a DFS, one vertex will find out that it can reach
either the other vertex eventually via a back edge, which indicates the existence of a directed cycle, or some
other vertex on the cycle. This property will be untilized in the algorithm we will study later for determining
the SCCs of a graph. */

Lemma 2 (7.12). Each vertex belongs to exactly one SCC.

/* All the SCCs of a graph form a partition of the set of vertices of the graph. */

Strongly Connected Components (cont.)

x

Figure: Adding an edge connecting two different strongly connected components.
Source: redrawn from [Manber 1989, Figure 7.31].

/* An induction on the edges goes by considering the edges one by one to see how they may change the
structure of the SCC graph observed so far. DFS turns out to provide a covenient ordering of the edges
(that is, the induction sequence). */

Strongly Connected Components (cont.)

a

b

c

d

e g

f

h

i

j k

Figure: The effect of cross edges.
Source: redrawn from [Manber 1989, Figure 7.32].

/* A cross edge may point to a vertex in the same SCC under exploration or another SCC that has already
been identified. */

2

Strongly Connected Components (cont.)

Algorithm Strongly Connected Components(G,n);
begin

for every vertex v of G do
v.DFS Number := 0;
v.Component := 0;

Current Component := 0; DFS N := n;
while v.DFS Number = 0 for some v do

SCC(v)
end

procedure SCC(v);
begin

v.DFS Number := DFS N ;
DFS N := DFS N − 1;
insert v into Stack;
v.High := v.DFS Number;

Strongly Connected Components (cont.)

for all edges (v, w) do
if w.DFS Number = 0 then

SCC(w);
v.High := max(v.High,w.High)

else if w.DFS Number > v.DFS Number
and w.Component = 0 then

v.High := max(v.High,w.DFS Number)
// max(v.High,w.High) also works

if v.High = v.DFS Number then
Current Component := Current Component + 1;
repeat

remove x from the top of Stack;
x.component := Current Component

until x = v
end

Time complexity: O(|E|+ |V |).

/* This is essentially the DFS with constant extra work per vertex. */

/* For an arbitrary SCC, the vertex v that is visited first (the “leader” of the SCC) during the DFS will
acquire the largest/highest DFS number among all the vertices in the same SCC. Every vertex in the SCC
reports the largest number it may reach to its parent (according to the DFS tree); in the actual code, it is the
parent vertex who collects the information by reading the High value of its child when the corresponding
recursive call returns. When the recursive call with v as the input is about to return, v will see that
v.High = v.DFS Number and thus find itself the leader of an SCC.

Due to the nature of DFS, the deeper an SCC is in the SCC graph (which is a DAG), the later it will be
visited/touched but the earlier it will be determined (i.e., all vertices in the SCC exhausted and assigned a
component number). */

3

Strongly Connected Components (cont.)

a

b

c

d

e g

f

h

i

j k

a b c d e f g h i j k
11 10 9 8 7 6 5 4 3 2 1

a 11 - - - - - - - - - -
b 11 10 - - - - - - - - -
c 11 10 9 - - - - - - - -
d 11 10 9 8 - - - - - - -
e 11 10 9 8 10 - - - - - -
d 11 10 9 10 10 - - - - - -
c 11 10 10 10 10 - - - - - -
f 11 10 10 10 10 6 - - - - -
g 11 10 10 10 10 6 7 - - - -
f 11 10 10 10 10 7 7 - - - -
c 11 10 10 10 10 7 7 - - - -
b© 11 10 10 10 10 7 7 - - - -
a 11 10 10 10 10 7 7 - - - -
h 11 10 10 10 10 7 7 4 - - -
i 11 10 10 10 10 7 7 4 3 - -
j 11 10 10 10 10 7 7 4 3 11 -
i 11 10 10 10 10 7 7 4 11 11 -
k© 11 10 10 10 10 7 7 4 11 11 1
i 11 10 10 10 10 7 7 4 11 11 1
h 11 10 10 10 10 7 7 11 11 11 1
a© 11 10 10 10 10 7 7 11 11 11 1

Figure: An example of computing High values and strongly connected components.

Source: redrawn from [Manber 1989, Figure 7.34].

Odd-Length Cycles

Problem 3. Given a directed graph G = (V,E), determine whether it contains a (directed) cycle of odd
length.

• A cycle must reside completely within a strongly connected component (SCC), so we exam each SCC
separately.

• Mark the nodes of an SCC with “even” or “odd” using DFS.

• If we have to mark a node that is already marked in the opposite, then we have found an odd-length
cycle.

2 Biconnected Components

Biconnected Components

• An undirected graph is biconnected if there are at least two vertex-disjoint paths from every vertex to
every other vertex.

• A graph is not biconnected if and only if there is a vertex whose removal disconnects the graph. Such
a vertex is called an articulation point .

• A biconnected component (BCC) is a maximal subset of the edges such that its induced subgraph is
biconnected (namely, there is no other subset that contains it and induces a biconnected graph).

Biconnected Components (cont.)

4

a

b

c

d

e f

g

h

i

j

k l

m n

o

p

Figure: The structure of a nonbiconnected graph.
Source: redrawn from [Manber 1989, Figure 7.25].

Biconnected Components (cont.)

Lemma 4 (7.9). Two distinct edges e and f belong to the same BCC if and only if there is a cycle containing
both of them.

Lemma 5 (7.10). Each edge belongs to exactly one BCC.

Biconnected Components (cont.)

b a

h

i

n

x x

(a) (b)

Figure: An edge that connects two different biconnected components. (a) The components corresponding to the graph of

Figure 7.25 with the articulation points indicated. (b) The biconnected component tree.

Source: redrawn from [Manber 1989, Figure 7.26].

Biconnected Components (cont.)

5

r

q

p

v

w1 w2

w3

Figure: Computing the High values.
Source: redrawn from [Manber 1989, Figure 7.27].

Biconnected Components (cont.)

Algorithm Biconnected Components(G, v, n);
begin

for every vertex w do w.DFS Number := 0;
DFS N := n;
BC(v)

end

procedure BC(v);
begin

v.DFS Number := DFS N ;
DFS N := DFS N − 1;
insert v into Stack;
v.High := v.DFS Number;

Biconnected Components (cont.)

for all edges (v, w) do
insert (v, w) into Stack;
if w is not the parent of v then

if w.DFS Number = 0 then
BC(w);
if w.High ≤ v.DFS Number then

remove all edges and vertices
from Stack until v is reached;

insert v back into Stack;
v.High := max(v.High,w.High)

else
v.High := max(v.High,w.DFS Number)
// max(v.High,w.High) would not work, unlike in SCC

end

6

Biconnected Components (cont.)

procedure BC(v);
begin

v.DFS Number := DFS N ;
DFS N := DFS N − 1;
v.High := v.DFS Number;
for all edges (v, w) do

if w is not the parent of v then
insert (v, w) into Stack;
if w.DFS Number = 0 then

BC(w);
if w.high ≤ v.DFS Number then

remove all edges from Stack
until (v, w) is reached;

v.High := max(v.High,w.High)
else

v.High := max(v.High,w.DFS Number)
end

Biconnected Components (cont.)

a

b

c

d

e f

g

h

i

j

k l

m n

o

p

a b c d e f g h i j k l m n o p
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

a 16 - - - - - - - - - - - - - - -
b 16 15 - - - - - - - - - - - - - -
c 16 15 14 - - - - - - - - - - - - -
d 16 15 14 13 - - - - - - - - - - - -
e 16 15 14 13 15 - - - - - - - - - - -
d 16 15 14 15 15 - - - - - - - - - - -
f 16 15 14 15 15 14 - - - - - - - - - -
d 16 15 14 15 15 14 - - - - - - - - - -
c 16 15 15 15 15 14 - - - - - - - - - -
g 16 15 15 15 15 14 15 - - - - - - - - -
c 16 15 15 15 15 14 15 - - - - - - - - -
b© 16 15 15 15 15 14 15 - - - - - - - - -
h 16 15 15 15 15 14 15 16 - - - - - - - -
i 16 15 15 15 15 14 15 16 8 - - - - - - -
j 16 15 15 15 15 14 15 16 8 7 - - - - - -
k 16 15 15 15 15 14 15 16 8 7 8 - - - - -
j 16 15 15 15 15 14 15 16 8 8 8 - - - - -
l 16 15 15 15 15 14 15 16 8 8 8 8 - - - -
j 16 15 15 15 15 14 15 16 8 8 8 8 - - - -
i© 16 15 15 15 15 14 15 16 8 8 8 8 - - - -
h© 16 15 15 15 15 14 15 16 8 8 8 8 - - - -
b 16 16 15 15 15 14 15 16 8 8 8 8 - - - -
a© 16 16 15 15 15 14 15 16 8 8 8 8 - - - -
m 16 16 15 15 15 14 15 16 8 8 8 8 4 - - -
n 16 16 15 15 15 14 15 16 8 8 8 8 4 16 - -
o 16 16 15 15 15 14 15 16 8 8 8 8 4 16 2 -
n© 16 16 15 15 15 14 15 16 8 8 8 8 4 16 2 -
p 16 16 15 15 15 14 15 16 8 8 8 8 4 16 2 16
n 16 16 15 15 15 14 15 16 8 8 8 8 4 16 2 16
m 16 16 15 15 15 14 15 16 8 8 8 8 16 16 2 16
a© 16 16 15 15 15 14 15 16 8 8 8 8 16 16 2 16

Figure: An example of computing the High values and biconnected components.

Source: redrawn from [Manber 1989, Figure 7.29].

Even-Length Cycles

Problem 6. Given a connected undirected graph G = (V,E), determine whether it contains a cycle of even
length.

Theorem 7. Every biconnected graph that has more than one edge and is not merely an odd-length cycle
contains an even-length cycle.

7

Even-Length Cycles (cont.)

v1 v2

vi

vi+1

vj

u

w
vk

Figure: Finding an even-length cycle.
Source: redrawn from [Manber 1989, Figure 7.35].

3 Network Flows

Network Flows

• Consider a directed graph, or network, G = (V,E) with two distinguished vertices: s (the source) with
indegree 0 and t (the sink) with outdegree 0.

• Each edge e in E has an associated positive weight c(e), called the capacity of e.

Network Flows (cont.)

• A flow is a function f on E that satisfies the following two conditions:

1. 0 ≤ f(e) ≤ c(e).

2.
∑
u

f(u, v) =
∑
w

f(v, w), for all v ∈ V − {s, t}.

• The network flow problem is to maximize the flow f for a given network G.

Network Flows (cont.)

s t

8

Figure: Reducing bipartite matching to network flow (the directions of all the edges are from left to
right).

Source: redrawn from [Manber 1989, Figure 7.39].

/* A graph is partite if its set of vertices can be divided into two disjoint subsets V1 and V2 such that every
edge in the graph connects a vertex in V1 with a vertex in V2. The bipartite matching problem asks for a
selection of as many edges as possible where no two edges share a common end vertex. */

Augmenting Paths

• An augmenting path w.r.t. a given flow f (of a network G) is a directed path from s to t consisting
of edges from G, but not necessarily in the same diretion; each of these edges (v, u) satisfies exactly
one of:

1. (v, u) is in the same direction as it is in G, and f(v, u) < c(v, u). (forward edge)

2. (v, u) is in the opposite direction in G (namely, (u, v) ∈ E), and f(u, v) > 0. (backward edge)

• If there exists an augmenting path w.r.t. a flow f (f admits an augmenting path), then f is not
maximum.

Augmenting Paths (cont.)

t

w

s
uv

4/3

3/3

6/3

5/5

6/5

5/5

7/3 4/2

1/1
4/3

7/7

3/2

Figure: An example of a network with a (nonmaximum) flow.
Source: redrawn from [Manber 1989, Figure 7.40].

Augmenting Paths (cont.)

t

w

s
uv

4/3

3/3

6/5

5/5

6/5

5/5

7/5 4/4

1/1
4/1

7/7

3/2

Figure: The result of augmenting the flow of Figure 7.40.
Source: redrawn from [Manber 1989, Figure 7.41].

9

Properties of Network Flows

Theorem 8 (Augmenting-Path). A flow f is maximum if and only if it admits no augmenting path.

A cut is a set of edges that separate s from t, or more precisely a set of the form {(v, w) ∈ E |
v ∈ A and w ∈ B}, where B = V −A such that s ∈ A and t ∈ B.

Theorem 9 (Max-Flow Min-Cut). The value of a maximum flow in a network is equal to the minimum
capacity of a cut.

Properties of Network Flows (cont.)

Theorem 10 (Integral-Flow). If the capacities of all edges in the network are integers, then there is a
maximum flow whose value is an integer.

Residual Graphs

• The residual graph with respect to a network G = (V,E) and a flow f is the network R = (V, F),
where F consists of all forward and backward edges and their capacities are given as follows:

1. cR(v, w) = c(v, w)− f(v, w) if (v, w) is a forward edge and

2. cR(v, w) = f(w, v) if (v, w) is a backward edge.

• An augmenting path is thus a regular directed path from s to t in the residual graph.

Residual Graphs (cont.)

t

ba

s

MM

1

MM

Figure: A bad example of network flow.
Source: redrawn from [Manber 1989, Figure 7.42].

/* Without any particular search tactics, one might first find the augmenting path s→ a→ b→ t and assign
a flow of 1 to each of the three edges. After the flow assignment, s → b → a → t becomes an augmenting
path, which can accommodate a flow of at most 1 on each edge. Suppose that path is taken. Now after two
tries of flow assignment, one in effect gets a flow of 1 on each of (s, a), (s, b), (a, t), and (b, t). If bad luck
persists, one would need 2M tries to find the maximum flow, while the best possible is just 2 tries. */

10

