Algorithms 2020: Analysis of Algorithms

(Based on [Manber 1989])

Yih-Kuen Tsay

September 29, 2020

1 Introduction

Introduction

- The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.) of an algorithm without implementing it on a specific computer. (Why?)
- As the exact behavior of an algorithm is hard to predict, the analysis is usually an approximation:
- Relative to the input size (usually denoted by n): input possibilities too enormous to elaborate
- Asymptotic: should care more about larger inputs
- Worst-Case: easier to do, often representative (Why not average-case?)
- Such an approximation is usually good enough for comparing different algorithms for the same problem.

Complexity

- Theoretically, "complexity of an algorithm" is a more precise term for "approximate behavior of an algorithm".
- Two most important measures of complexity:
- Time Complexity an upper bound on the number of steps that the algorithm performs.
- Space Complexity an upper bound on the amount of temporary storage required for running the algorithm (excluding the input, the output, and the program itself).
- We will focus on time complexity.

Comparing Running Times

- How do we compare the following running times?

1. $100 n$
2. $2 n^{2}+50$
3. $100 n^{1.8}$

- We will study an approach (the O notation) that allows us to ignore constant factors and concentrate on the behavior as n goes to infinity.
- For most algorithms, the constants in the expressions of their running times tend to be small.

2 The O Notation

The O Notation

- A function $g(n)$ is $O(f(n))$ for another function $f(n)$ if there exist constants c and N such that, for all $n \geq N, g(n) \leq c f(n)$.
- The function $g(n)$ may be substantially less than $c f(n)$; the O notation bounds it only from above.
- The O notation allows us to ignore constants conveniently.
- Examples:
$-5 n^{2}+15=O\left(n^{2}\right) .\left(\right.$ cf. $5 n^{2}+15 \leq O\left(n^{2}\right)$ or $\left.5 n^{2}+15 \in O\left(n^{2}\right)\right)$
$-5 n^{2}+15=O\left(n^{3}\right) .\left(\right.$ cf. $5 n^{2}+15 \leq O\left(n^{3}\right)$ or $\left.5 n^{2}+15 \in O\left(n^{3}\right)\right)$
- As part of an expression like $T(n)=3 n^{2}+O(n)$.

The O Notation (cont.)

- No need to specify the base of a logarithm.

$$
-\log _{2} n=\frac{\log _{10} n}{\log _{10} 2}=\frac{1}{\log _{10} 2} \log _{10} n
$$

- For example, we can just write $O(\log n)$.
- $O(1)$ denotes a constant.

Properties of O

- We can add and multiply with O.

Lemma 1 (3.2). 1. If $f(n)=O(s(n))$ and $g(n)=O(r(n))$, then $f(n)+g(n)=O(s(n)+r(n))$. 2. If $f(n)=O(s(n))$ and $g(n)=O(r(n))$, then $f(n) \cdot g(n)=O(s(n) \cdot r(n))$.
/* There exist constants c_{1}, N_{1}, c_{2}, and N_{2} such that, for all $n \geq N_{1}, f(n) \leq c_{1} s(n)$ and, for all $n \geq N_{2}$, $g(n) \leq c_{2} r(n)$. Assume without loss of generality that $c_{1} \geq c_{2}$ and $N_{1} \geq N_{2}$. Then, for all $n \geq N_{1}$, $f(n)+g(n) \leq c_{1} s(n)+c_{2} r(n) \leq c_{1} s(n)+c_{1} r(n)=c_{1}(s(n)+r(n))$, i.e., $f(n)+g(n)=O(s(n)+r(n))$. Also, for all $n \geq N_{1}, f(n) \cdot g(n) \leq c_{1} s(n) \cdot c_{2} r(n)=c_{1} c_{2}(s(n) \cdot r(n))$, which implies that there exist constants c and N such that, for all $n \geq N, f(n) \cdot g(n) \leq c(s(n) \cdot r(n))$, i.e., $f(n) \cdot g(n)=O(s(n) \cdot r(n))$. */

- However, we cannot subtract or divide with O.

$$
\begin{aligned}
& -2 n=O(n), n=O(n), \text { and } 2 n-n=n \neq O(n-n) \\
& -n^{2}=O\left(n^{2}\right), n=O\left(n^{2}\right), \text { and } n^{2} / n=n \neq O\left(n^{2} / n^{2}\right)
\end{aligned}
$$

3 Speed of Growth

Polynomial vs. Exponential

- A function $f(n)$ is monotonically growing (or monotonically increasing) if $n_{1} \geq n_{2}$ implies that $f\left(n_{1}\right) \geq$ $f\left(n_{2}\right)$.
- An exponential function grows at least as fast as a polynomial function does.

Theorem 2 (3.1). For all constants $c>0$ and $a>1$, and for all monotonically growing functions $f(n),(f(n))^{c}=O\left(a^{f(n)}\right)$.

- Examples:
- Take n as $f(n), n^{c}=O\left(a^{n}\right)$.
- Take $\log _{a} n$ as $f(n),\left(\log _{a} n\right)^{c}=O\left(a^{\log _{a} n}\right)=O(n)$.

Speed of Growth

$\log n$	n	$n \log n$	n^{2}	n^{3}	2^{n}
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4,096	65,536
5	32	160	1,024	32,768	$4,294,967,296$

Table: Function values.

Source: redrawn from [E. Horowitz et al. 1998, Table 1.7].

Speed of Growth (cont.)

running times	time $_{1}$	time $_{2}$	time $_{3}$	time $_{4}$
	1000 steps/sec	2000 steps/sec	4000 steps/sec	8000 steps/sec
$\log n$	0.010	0.005	0.003	0.001
n	1	0.5	0.25	0.125
$n \log n$	10	5	2.5	1.25
$n^{1.5}$	32	16	8	4
n^{2}	1000	500	250	125
n^{3}	1,000,000	500,000	250,000	125,000
1.1^{n}	10^{39}	10^{39}	10^{38}	10^{38}

Table: Running times (in seconds) under different assumptions ($\mathrm{n}=1000$).
Source: redrawn from [Manber 1989, Table 3.1].
O, o, Ω, and Θ

- Let $T(n)$ be the number of steps required to solve a given problem for input size n.
- We say that $T(n)=\Omega(g(n))$ or the problem has a lower bound of $\Omega(g(n))$ if there exist constants c and N such that, for all $n \geq N, T(n) \geq c g(n)$.
- If a certain function $f(n)$ satisfies both $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$, then we say that $f(n)=$ $\Theta(g(n))$.
- We say that $f(n)=o(g(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.

Polynomial vs. Exponential (cont.)

- An exponential function grows faster than a polynomial function does.

Theorem 3 (3.3). For all constants $c>0$ and $a>1$, and for all monotonically growing functions $f(n)$, we have

$$
(f(n))^{c}=o\left(a^{f(n)}\right)
$$

- Consider a previous example again: Take $\log _{a} n$ as $f(n)$. For all $c>0$ and $a>1$,

$$
\left(\log _{a} n\right)^{c}=o\left(a^{\log _{a} n}\right)=o(n) .
$$

4 Sums

Sums

- Techniques for summing expressions are essential for complexity analysis.
- For example, given that we know

$$
S_{0}(n)=\sum_{i=1}^{n} 1=n
$$

and

$$
S_{1}(n)=\sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

we want to compute the sum

$$
S_{2}(n)=\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}
$$

Sums (cont.)

From

$$
(i+1)^{3}=i^{3}+3 i^{2}+3 i+1
$$

we have

$$
\begin{aligned}
(i+1)^{3}-i^{3} & =3 i^{2}+3 i+1 . \\
2^{3}-1^{3} & =3 \times 1^{2}+3 \times 1+1 \\
3^{3}-2^{3} & =3 \times 2^{2}+3 \times 2+1 \\
4^{3}-3^{3} & =3 \times 3^{2}+3 \times 3+1 \\
\cdots & \cdots \\
(n+1)^{3}-n^{3} & =3 \times n^{2}+3 \times n+1 \\
\hline(n+1)^{3}-1 & =3 \times S_{2}(n)+3 \times S_{1}(n)+S_{0}(n) \\
\left(S_{3}(n+1)-S_{3}(1)\right)-S_{3}(n) & =3 \times S_{2}(n)+3 \times S_{1}(n)+S_{0}(n)
\end{aligned}
$$

Sums (cont.)

- So, we have

$$
(n+1)^{3}-1=3 \times S_{2}(n)+3 \times S_{1}(n)+S_{0}(n)
$$

- Given $S_{0}(n)$ and $S_{1}(n)$, the sum $S_{2}(n)$ can be computed by straightforward algebra.
- Recall that the left-hand side $(n+1)^{3}-1$ equals $\left(S_{3}(n+1)-S_{3}(1)\right)-S_{3}(n)$, a result from "shifting and canceling" terms of two sums.
- This generalizes to $S_{k}(n)$, for $k>2$.
- Similar shifting and canceling techniques apply to other kinds of sums.
/* We actually will need to obtain an upper bound for the sum of n upper bounds. For instance, $\sum_{i=1}^{n} O(1)=$ $O\left(\sum_{i=1}^{n} 1\right)=O(n), \sum_{i=1}^{n} O(i)=O\left(\sum_{i=1}^{n} i\right)=O\left(\frac{n(n+1)}{2}\right)=O\left(n^{2}\right)$, etc. $* /$

5 Recurrence Relations

Recurrence Relations

- A recurrence relation is a way to define a function by an expression involving the same function.
- The Fibonacci numbers, for example, can be defined as follows:

$$
\left\{\begin{array}{l}
F(1)=1 \\
F(2)=1 \\
F(n)=F(n-2)+F(n-1)
\end{array}\right.
$$

We would need $k-2$ steps to compute $F(k)$.

- It is more convenient to have an explicit (or closed-form) expression.
- To obtain the explicit expression is called solving the recurrence relation.

Guessing and Proving an Upper Bound

- Recurrence relation: $\left\{\begin{array}{l}T(2)=1 \\ T(2 n) \leq 2 T(n)+2 n-1\end{array}\right.$
- Guess: $T(n)=O(n \log n)$.
- Proof:

1. Base case: $T(2) \leq 2 \log 2$.
2. Inductive step: $T(2 n) \leq 2 T(n)+2 n-1$

$$
\begin{aligned}
& \leq 2(n \log n)+2 n-1 \\
& =2 n \log n+2 n \log 2-1 \\
& \leq 2 n(\log n+\log 2) \\
& =2 n \log 2 n
\end{aligned}
$$

Solving the Fibonacci Relation

- We will study two techniques for solving the Fibonacci relation.

1. One uses the characteristic equation
2. The other uses generating functions

- These techniques may be generalized to handle recurrence relations of the form

$$
F(n)=b_{1} F(n-1)+b_{2} F(n-2)+\cdots+b_{k} F(n-k)
$$

for a constant k.

Using the Characteristic Equation

- $F(n)$ nearly doubles every time and should be an exponential function.
- But what is the base of the exponential function?
- The base a should satisfy $a^{n}=a^{n-1}+a^{n-2}$, which implies $a^{2}=a+1$ (called the characteristic equation).
- There are two solutions to the characteristic equation: $a_{1}=\frac{1+\sqrt{5}}{2}$ and $a_{2}=\frac{1-\sqrt{5}}{2}$.
- Any linear combination of a_{1}^{n} and a_{2}^{n} solves the recurrence relation.

Using the Characteristic Equation (cont.)

- So, the general solution is

$$
c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
$$

- To fit the values of $F(1)$ and $F(2), c_{1}$ and c_{2} must satisfy

$$
\begin{aligned}
& c_{1}\left(\frac{1+\sqrt{5}}{2}\right)+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1 \\
& c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{2}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{2}=1
\end{aligned}
$$

- Therefore, $c_{1}=\frac{1}{\sqrt{5}}$ and $c_{2}=-\frac{1}{\sqrt{5}}$, and the exact solution to the Fibonacci relation is

$$
F(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Using Generating Functions

- Generating functions provide a systematic, effective means for representing and manipulating infinite sequences (of numbers).
- We use them here to derive a closed-form representation of the Fibonacci numbers.
- Below are two basic generating functions:

gen. func.	power series	generated sequence
$\frac{1}{1-z}$	$1+z+z^{2}+\cdots+z^{n}+\cdots$	$1,1,1, \cdots, 1, \cdots$
$\frac{c}{1-a z}$	$c+c a z+c a^{2} z^{2}+\cdots+c a^{n} z^{n}+\cdots$	$c, c a, c a^{2}, \cdots, c a^{n}, \cdots$

- The second one is a generalization of the first and will be used in our solution.

Using Generating Functions (cont.)

Let $F(z)=0+F_{1} z+F_{2} z^{2}+F_{3} z^{3}+\cdots+F_{n} z^{n}+\cdots$ (a generating function for the Fibonacci numbers; $F(n)$ is written as F_{n} here).

$$
\begin{aligned}
F(z) & =F_{1} z+F_{2} z^{2}+F_{3} z^{3}+\cdots+F_{n} z^{n}+F_{n+1} z^{n+1}+\cdots \\
z F(z) & =F_{1} z^{2}+F_{2} z^{3}+\cdots+F_{n-1} z^{n}+F_{n} z^{n+1}+\cdots \\
z^{2} F(z) & =F_{1} z^{3}+F_{2} z^{4}+\cdots+F_{n-2} z^{n}+F_{n-1} z^{n+1}+\cdots \\
\left(1-z-z^{2}\right) F(z) & =z \\
F(z) & =\frac{z}{1-z-z^{2}} \quad\left(=\frac{z}{\left(1-\frac{1+\sqrt{5}}{2} z\right)\left(1-\frac{1-\sqrt{5}}{2} z\right)}\right) \\
& =\frac{\frac{1}{\sqrt{5}}}{1-\frac{1+\sqrt{5}}{2} z}+\frac{-\frac{1}{\sqrt{5}}}{1-\frac{1-\sqrt{5}}{2} z}
\end{aligned}
$$

/*

$$
\begin{aligned}
F(z)= & \frac{\frac{1}{\sqrt{5}}}{1-\frac{1+\sqrt{5}}{2} z}+\frac{-\frac{1}{\sqrt{5}}}{1-\frac{1-\sqrt{5}}{2} z} \\
= & \left(\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}} \frac{1+\sqrt{5}}{2} z+\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{2} z^{2}+\cdots+\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n} z^{n}+\cdots\right)+ \\
& \left(-\frac{1}{\sqrt{5}}+\left(-\frac{1}{\sqrt{5}}\right) \frac{1-\sqrt{5}}{2} z+\left(-\frac{1}{\sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{2} z^{2}+\cdots+\left(-\frac{1}{\sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n} z^{n}+\cdots\right) \\
= & z+z^{2}+\cdots+\left(\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) z^{n}+\cdots
\end{aligned}
$$

*/
Therefore, $F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.

6 Divide and Conquer Relations

Divide and Conquer Relations

- The running time $T(n)$ of a divide-and-conquer algorithm satisfies

$$
T(n)=a T(n / b)+O\left(n^{k}\right)
$$

where
$-a$ is the number of subproblems,
$-n / b$ is the size of each subproblem, and
$-O\left(n^{k}\right)$ is the time spent on dividing the problem and combining the solutions.

Divide and Conquer Relations (cont.)

Assume, for simplicity, $n=b^{m}\left(\frac{n}{b^{m}}=1, \frac{n}{b^{m-1}}=b\right.$, etc. $)$.

$$
\begin{aligned}
T(n) & =a T\left(\frac{n}{b}\right)+O\left(n^{k}\right) \\
& =a\left(a T\left(\frac{n}{b^{2}}\right)+O\left(\left(\frac{n}{b}\right)^{k}\right)\right)+O\left(n^{k}\right) \\
& =a\left(a\left(a T\left(\frac{n}{b^{3}}\right)+O\left(\left(\frac{n}{b^{2}}\right)^{k}\right)\right)+O\left(\left(\frac{n}{b}\right)^{k}\right)\right)+O\left(n^{k}\right) \\
& \cdots \\
& =a\left(a\left(\cdots\left(a T\left(\frac{n}{b^{m}}\right)+O\left(\left(\frac{n}{b^{m-1}}\right)^{k}\right)\right)+\cdots\right)+O\left(\left(\frac{n}{b}\right)^{k}\right)\right)+O\left(n^{k}\right)
\end{aligned}
$$

Assuming $T(1)=O(1)\left(\right.$ and recalling $n=b^{m}$, i.e., $\left.m=\log _{b} n\right)$,

$$
T(n)=a^{m} \times O(1)+\sum_{i=1}^{m} a^{m-i} O\left(b^{i k}\right)=O\left(a^{m}\right)+a^{m} \sum_{i=1}^{m} O\left(\left(\frac{b^{k}}{a}\right)^{i}\right)
$$

Divide and Conquer Relations (cont.)

As $m=\log _{b} n$ and $a^{m}=a^{\log _{b} n}=n^{\log _{b} a}$,

$$
T(n)=O\left(n^{\log _{b} a}\right)+O\left(n^{\log _{b} a}\right) \times O\left(\sum_{i=1}^{\log _{b} n}\left(\frac{b^{k}}{a}\right)^{i}\right)
$$

- $O\left(n^{\log _{b} a}\right)$ is the accumulative time for computing all the subproblems.
- $O\left(n^{\log _{b} a}\right) \times O\left(\sum_{i=1}^{\log _{b} n}\left(\frac{b^{k}}{a}\right)^{i}\right)$ is the accumulative time for dividing problems and combining solutions.
- Three cases to consider: $\frac{b^{k}}{a}<1, \frac{b^{k}}{a}=1$, and $\frac{b^{k}}{a}>1$.
/* Case 1: $\frac{b^{k}}{a}<1$. The geometric series $\sum_{i=1}^{\log _{b} n}\left(\frac{b^{k}}{a}\right)^{i}$ converges to some constant. So, $T(n)=O\left(n^{\log _{b} a}\right)+$ $O\left(n^{\log _{b} a}\right) \times \stackrel{a}{O}(1)=O\left(n^{\log _{b} a}\right)$.

Case 2: $\frac{b^{k}}{a}=1$, i.e., $\log _{b} a=k . O\left(\sum_{i=1}^{\log _{b} n}\left(\frac{b^{k}}{a}\right)^{i}\right)=O\left(\log _{b} n\right)=O(\log n)$. So, $T(n)=O\left(n^{\log _{b} a}\right)+$ $O\left(n^{\log _{b} a}\right) \times O(\log n)=O\left(n^{k} \log n\right)$.

Case 3: $\frac{b^{k}}{a}>1$. $O\left(\sum_{i=1}^{\log _{b} n}\left(\frac{b^{k}}{a}\right)^{i}\right)=O\left(\frac{b^{k}}{a} \frac{\left(\frac{b^{k}}{a}\right)^{\log _{b} n}-1}{\frac{b^{k}}{}-1}\right)=O\left(\left(\frac{b^{k}}{a}\right)^{\log _{b} n}\right)=O\left(\frac{\left(b^{k}\right)^{\log _{b} n}}{a^{\log _{b} n}}\right)=O\left(\frac{\left(b^{\log _{b} n}\right)^{k}}{n^{\log _{b} a}}\right)=$ $O\left(\frac{n^{k}}{n^{\log _{b} a}}\right) . T(n)=O\left(n^{\log _{b} a}\right)+O\left(n^{\log _{b} a}\right) \times O\left(\frac{n^{a}}{n^{\log _{b} a}}\right)=O\left(n^{\log _{b} a}\right)+O\left(n^{k}\right)=O\left(n^{k}\right)$, since $\frac{b^{k}}{a}>1$ implies $k>\log _{b} a$. ${ }^{*} /$

Divide and Conquer Relations (cont.)

Theorem 4 (3.4). The solution of the recurrence relation $T(n)=a T(n / b)+O\left(n^{k}\right)$, where a and b are integer constants, $a \geq 1, b \geq 2$, and k is a non-negative real constant, is

$$
T(n)= \begin{cases}O\left(n^{\log _{b} a}\right) & \text { if } a>b^{k} \\ O\left(n^{k} \log n\right) & \text { if } a=b^{k} \\ O\left(n^{k}\right) & \text { if } a<b^{k}\end{cases}
$$

This theorem may be slightly generalized by replacing $O\left(n^{k}\right)$ with some $f(n)$, but the current form is sufficient for the cases we will encounter. Due to its generality and usefulness, the theorem has conventionally been referred to as "the master theorem".
/* Example 1: Suppose $T(n)=T(n / 2)+O(1)$ (arising from, e.g., binary search). In this case, $a=1, b=2$, and $k=0$. We have $a=b^{k}$ and the second case of the theorem applies. Therefore, $T(n)=O\left(n^{0} \log n\right)=$ $O(\log n)$.

Example 2: Suppose $T(n)=2 T(n / 2)+O(n)$ (arising from, e.g., merge sort). In this case, $a=2, b=2$, and $k=1$. We have $a=b^{k}$ and again the second case of the theorem applies. Therefore, $T(n)=O(n \log n)$. */

Recurrent Relations with Full History

- Example One:

$$
T(n)=c+\sum_{i=1}^{n-1} T(i)
$$

where c is a constant and $T(1)$ is given separately.

- $T(n)-T(n-1)=\left(c+\sum_{i=1}^{n-1} T(i)\right)-\left(c+\sum_{i=1}^{n-2} T(i)\right)=T(n-1)$; hence, $T(n)=2 T(n-1)$. (This holds only for $n \geq 3$.) /* The relation $T(n)=2 T(n-1)$ does not hold for $n=2$, as $T(2)-T(1)=c$ $(\operatorname{not} T(1)) .{ }^{*} /$
- So, we get

$$
\left\{\begin{array}{l}
T(2)=c+T(1) \\
T(n)=2 T(n-1) \quad \text { if } n \geq 3
\end{array}\right.
$$

which is easier to solve.

- $T(n+1)=(c+T(1)) 2^{n-1}$, for $n \geq 2$.

Recurrent Relations with Full History (cont.)

- Example Two:

$$
T(n)=n-1+\frac{2}{n} \sum_{i=1}^{n-1} T(i),(\text { for } n \geq 2) \cdot T(1)=0
$$

- Multiply both sides of the equation with n for $T(n)$ and $(n+1)$ for $T(n+1)$.

$$
\begin{aligned}
& n T(n)=n(n-1)+2 \sum_{i=1}^{n-1} T(i) \\
& (n+1) T(n+1)=(n+1) n+2 \sum_{i=1}^{n} T(i)
\end{aligned}
$$

- Take the difference.

$$
(n+1) T(n+1)-n T(n)=(n+1) n-n(n-1)+2 T(n)=2 n+2 T(n)
$$

which implies

$$
T(n+1)=\frac{n+2}{n+1} T(n)+\frac{2 n}{n+1}
$$

Recurrent Relations with Full History (cont.)

- Further simplification.

$$
T(n+1) \leq \frac{n+2}{n+1} T(n)+2
$$

- Expanding and canceling.

$$
\begin{aligned}
& T(n) \\
& \leq 2+\frac{n+1}{n}\left(2+\frac{n}{n-1}\left(2+\frac{n-1}{n-2}\left(\cdots\left(2+\frac{4}{3} T(2)\right) \cdots\right)\right)\right) \\
& \leq 2\left(1+\frac{n+1}{n}+\frac{n+1}{n} \frac{n}{n-1}+\frac{n+1}{n} \frac{n}{n-1} \frac{n-1}{n-2}+\cdots+\left(\frac{n+1}{n} \frac{n}{n-1} \cdots \frac{4}{3}\right)\right) \\
& \leq 2(n+1)\left(\frac{1}{n+1}+\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{3}\right) \\
& \leq 2+2(n+1)\left(\frac{1}{n}+\frac{1}{n-1}+\cdots+1\right) \\
& =O(n \log n)
\end{aligned}
$$

(Note: $T(1)=0$ and $T(2) \leq 2+\frac{3}{2} T(1)=2$)

7 Useful Facts

Useful Facts

- Bounding a summation by an integral:

If $f(x)$ is monotonically increasing, then

$$
\sum_{i=1}^{n} f(i) \leq \int_{1}^{n+1} f(x) d x
$$

If $f(x)$ is monotonically decreasing, then

$$
\sum_{i=1}^{n} f(i) \leq f(1)+\int_{1}^{n} f(x) d x
$$

- Stirling's approximation

$$
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}(1+O(1 / n)) .
$$

Bounding a Summation by an Integral

$$
\sum_{i=1}^{n} f(i) \leq \int_{1}^{n+1} f(x) d x
$$

/* This technique can be used to show that $\int_{0}^{n} f(x) d x \leq \sum_{i=1}^{n} f(i)$, by shifting the n vertical bars (which represent $\left.\sum_{i=1}^{n} f(i)\right)$ in the diagram to the left by one unit.

When $f(x)$ is monotonically decreasing, we state that $\sum_{i=1}^{n} f(i) \leq f(1)+\int_{1}^{n} f(x) d x$, rather than $\sum_{i=1}^{n} f(i) \leq \int_{0}^{n} f(x) d x$, as the part $\int_{0}^{1} f(x) d x$ might go to infinity and would not be a good upper bound. Isolating the first term of the sum, we have $\sum_{i=1}^{n} f(i)=f(1)+\sum_{i=2}^{n} f(i) \leq f(1)+\int_{1}^{n} f(x) d x$. It can also be shown that $\int_{1}^{n+1} f(x) d x \leq \sum_{i=1}^{n} f(i)$. */

Useful Facts (cont.)

- Harmonic series

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k}=\ln n+\gamma+O(1 / n)
$$

where $\gamma=0.577 \ldots$ is Euler's constant. So, $H_{n}=O(\log n)$.
/* The upper bound may also be obtained using an integral. $\sum_{k=1}^{n} \frac{1}{k} \leq \frac{1}{1}+\int_{1}^{n} \frac{1}{x} d x=1+\ln n=$ $O(\ln n)=O(\log n) .{ }^{*} /$

- Sum of logarithms

$$
\begin{aligned}
\sum_{i=1}^{n}\left\lfloor\log _{2} i\right\rfloor & =(n+1)\left\lfloor\log _{2} n\right\rfloor-2^{\left\lfloor\log _{2} n\right\rfloor+1}+2 \\
& =\Theta(n \log n)
\end{aligned}
$$

$/^{*} \sum_{i=1}^{n}\left\lfloor\log _{2} i\right\rfloor \leq \sum_{i=1}^{n} \log _{2} i=\log _{2}(n!)=\log _{2}\left(\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}(1+O(1 / n))\right)=O\left(\log _{2}\left(\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\right)\right)=$ $O\left(\log _{2} \sqrt{2 \pi n}+\log _{2}\left(\frac{n}{e}\right)^{n}\right)=O\left(\log _{2} \sqrt{2 \pi n}+n \log _{2}\left(\frac{n}{e}\right)\right)=O(n \log n)$. The other direction $\sum_{i=1}^{n}\left\lfloor\log _{2} i\right\rfloor \geq$ $\left(\sum_{i=1}^{n} \log _{2} i\right)-n .{ }^{*} /$

