Algorithms 2020: Data Structures

A Supplement (Based on [Manber 1989])

Yih-Kuen Tsay
October 13, 2020

1 Heaps

Heaps

- A (max binary) heap is a complete binary tree whose keys satisfy the heap property:
the key of every node is greater than or equal to the key of any of its children.
- It supports the two basic operations of a priority queue:
- Insert(x): insert the key x into the heap.
- Remove(): remove and return the largest key from the heap.

Heaps (cont.)

- A complete binary tree can be represented implicitly by an array A as follows:

1. The root is stored in $A[1]$.
2. The left child of $A[i]$ is stored in $A[2 i]$ and the right child is stored in $A[2 i+1]$.

Heaps (cont.)

```
Algorithm Remove_Max_from_Heap \((A, n)\);
begin
    if \(n=0\) then print "the heap is empty"
    else Top_of_the_Heap :=A[1];
        \(A[1]:=A[n] ; n:=n-1 ;\)
        parent \(:=1\); child \(:=2\);
        while child \(\leq n-1\) do
            if \(A[\) child \(]<A[\) child +1\(]\) then
                child \(:=\) child +1 ;
            if \(A[\) child \(]>A[\) parent \(]\) then
                \(\operatorname{swap}(A[\) parent \(], A[\) child \(])\);
                parent \(:=\) child;
                child \(:=2 *\) child
            else child \(:=n\)
end
```


Heaps (cont.)

```
Algorithm Insert_to_Heap \((A, n, x)\);
begin
    \(n:=n+1 ;\)
    \(A[n]:=x\);
    child \(:=n\);
    parent \(:=n\) div 2 ;
    while parent \(\geq 1\) do
        if \(A[\) parent \(]<A[\) child \(]\) then
            \(\operatorname{swap}(A[\) parent \(], A[\) child \(])\);
            child \(:=\) parent;
            parent \(:=\) parent div 2
            else parent \(:=0\)
end
```


2 AVL Trees

AVL Trees

Definition 1. An AVL tree is a binary search tree such that, for every node, the difference between the heights of its left and right subtrees is at most 1 (the height of an empty tree is defined as 0).

This definition guarantees a maximal height of $O(\log n)$ for any AVL tree of n nodes.
$/^{*}$ Let $G(h)$ denote the least possible number of nodes contained in an AVL tree of height h; the empty tree has height -1 and a single-node tree has height 0 . A recurrence relation for $G(h)$ can be defined as follows:

$$
\begin{cases}G(-1) & =0 \\ G(0) & =1 \\ G(h) & =G(h-1)+G(h-2)+1, \quad h \geq 1\end{cases}
$$

A precise solution to $G(h)$ may be derived by establishing the relation $G(h)=F(h+3)-1$, where $F(i)$ is the i-th Fibonacci number (as defined in Chapter 3.5 of Manber's book) for which we already know the closed form; the proof is quite simple by induction. So, for any AVL tree with n nodes and of height h, $n \geq G(h) \geq F(h+3)-1 \geq c a^{h}$ (for some positive constants c and a and sufficiently large n). It follows that $h=O(\log n) .{ }^{*} /$

AVL Trees (cont.)

(a)

(b)

Figure: Insertions that invalidate the AVL property.
Source: redrawn from [Manber 1989, Figure 4.13].

AVL Trees (cont.)

(a)

(b)

Figure: A single rotation: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.14].

AVL Trees (cont.)

(a)

(b)

Figure: A double rotation: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.15].

3 Union-Find

Union-Find

- There are n elements $x_{1}, x_{2}, \cdots, x_{n}$ divided into groups. Initially, each element is in a group by itself.
- Two operations on the elements and groups:
- $\operatorname{find}(A)$: returns the name of A 's group.
- union (A, B) : combines A 's and B 's groups to form a new group with a unique name.
- To tell if two elements are in the same group, one may issue a find operation for each element and see if the returned names are the same.

Union-Find (cont.)

Figure: The representation for the union-find problem.
Source: redrawn from [Manber 1989, Figure 4.16].

Balancing

- The root also stores the number of elements in (i.e., the size of) its group.
- To balance the tree resulted from a union operation, let the smaller group join the larger group and update the size of the larger group accordingly.
Theorem 2 (Theorem 4.2). If balancing is used, then any tree of height h must contain at least 2^{h} elements.
- Any sequence of m find or union operations (where $m \geq n$) takes $O(m \log n)$ steps.

Union-Find (cont.)

Figure: Path compression: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.17].

Effect of Path Compression

Theorem 3 (Theorem 4.3). If both balancing and path compression are used, any sequence of m find or union operations (where $m \geq n)$ takes $O\left(m \log ^{*} n\right)$ steps.

The value of $\log ^{*} n$ intuitively equals the number of times that one has to apply \log to n to bring its value down to 1 .

Code for Union-Find

```
Algorithm Union_Find_Init(A,n);
begin
    for i := 1 to n do
        A[i].parent := nil;
        A[i].size := 1
end
Algorithm Find(a);
begin
    if A[a].parent <> nil then
        A[a].parent := Find(A[a].parent);
        Find := A[a].parent;
    else
        Find := a
end
```


Code for Union-Find (cont.)

```
Algorithm Union(a,b);
begin
    x := Find(a);
    y := Find(b);
    if x <> y then
        if A[x].size > A[y].size then
            A[y].parent := x;
            A[x].size := A[x].size + A[y].size;
```

else
$\mathrm{A}[\mathrm{x}]$. parent := y ;
A[y].size := A[y].size + A[x].size
end

