Searching and Sorting (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Searching a Sorted Sequence

Problem

Let $x_{1}, x_{2}, \cdots, x_{n}$ be a sequence of real numbers such that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Given a real number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that $x_{i}=z$.

Searching a Sorted Sequence

Problem

Let $x_{1}, x_{2}, \cdots, x_{n}$ be a sequence of real numbers such that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Given a real number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that $x_{i}=z$.

Idea: cut the search space in half by asking only one question.

$$
\left\{\begin{array}{l}
T(1)=O(1) \\
T(n)=T\left(\frac{n}{2}\right)+O(1), n \geq 2
\end{array}\right.
$$

Time complexity: $O(\log n)$ (applying the master theorem with $a=1$, $b=2, k=0$, and $\left.b^{k}=1=a\right)$.

Binary Search

function Find (z, Left, Right) : integer; begin
if Left = Right then
if $X[$ Left $]=z$ then Find $:=$ Left
else Find $:=0$
else
Middle $:=\left\lceil\frac{\text { Left }+ \text { Right }}{2}\right\rceil$;
if $z<X$ [Middle] then
Find $:=$ Find $(z$, Left, Middle -1$)$
else

$$
\text { Find }:=\text { Find(} z, \text { Middle, Right) }
$$

end
Algorithm Binary_Search (X, n, z); begin

Position := Find (z, 1, n);
end

Binary Search: Alternative

function Find (z, Left, Right) : integer; begin
if Left > Right then
Find :=0
else
Middle $:=\left\lceil\frac{\text { Left }+ \text { Right }}{2}\right\rceil$;
if $z=X[$ Middle $]$ then
Find $:=$ Middle
else if $z<X[$ Middle $]$ then
Find $:=$ Find $(z$, Left, Middle -1$)$
else

$$
\text { Find }:=\text { Find }(z, \text { Middle }+1, \text { Right })
$$

end
How do the two algorithms compare?

Searching a Cyclically Sorted Sequence

Problem

Given a cyclically sorted list, find the position of the minimal element in the list (we assume, for simplicity, that this position is unique).

Example 1:

- $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4\end{array}\right]$

漛 The 4th is the minimal element.

- Example 2:
- $\left.\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right]$
The 1st is the minimal element.

Searching a Cyclically Sorted Sequence

Problem

Given a cyclically sorted list, find the position of the minimal element in the list (we assume, for simplicity, that this position is unique).

Example 1:

- $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4\end{array}\right]$

潘 The 4th is the minimal element.

- Example 2:
-. $\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right]$

The 1st is the minimal element.
To cut the search space in half, what question should we ask?

Cyclic Binary Search

Algorithm Cyclic_Binary_Search (X, n); begin

Position := Cyclic_Find (1, n);
end
function Cyclic_Find (Left, Right) : integer; begin
if Left $=$ Right then Cyclic_Find $:=$ Left else

$$
\begin{aligned}
& \text { Middle }:=\left\lfloor\frac{\text { Left }+ \text { Right }}{2}\right\rfloor \\
& \text { if } X[\text { Middle }]<X[\text { Right }] \text { then } \\
& \quad \text { Cyclic_Find }:=\text { Cyclic_Find(Left, Middle) }
\end{aligned}
$$

else
Cyclic_Find := Cyclic_Find(Middle +1 , Right)
end

"Fixpoints"

Problem

Given a sorted sequence of distinct integers $a_{1}, a_{2}, \cdots, a_{n}$, determine whether there exists an index i such that $a_{i}=i$.

Example 1:

$$
\begin{gathered}
{\left[\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
-1 & 1 & 2 & 4 & 5 & 6 & 8 & 9
\end{array}\right]} \\
a_{4}=4 \text { (there cre more } \ldots \text {...). }
\end{gathered}
$$

Example 2 :

$$
\left[\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
-1 & 1 & 2 & 5 & 6 & 8 & 9 & 10
\end{array}\right]
$$

There is no i such that $a_{i}=i$.

"Fixpoints"

Problem

Given a sorted sequence of distinct integers $a_{1}, a_{2}, \cdots, a_{n}$, determine whether there exists an index i such that $a_{i}=i$.

Example 1:

$$
\begin{gathered}
{\left[\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
-1 & 1 & 2 & 4 & 5 & 6 & 8 & 9
\end{array}\right]} \\
a_{4}=4 \text { (there are more } \ldots \text {). }
\end{gathered}
$$

Example 2 :
$\left[\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ -1 & 1 & 2 & 5 & 6 & 8 & 9 & 10\end{array}\right]$

There is no i such that $a_{i}=i$.

- Again, can we cut the search space in half by asking only one question?

A Special Binary Search

function Special_Find (Left, Right) : integer; begin
if Left $=$ Right then if $A[$ Left $]=$ Left then Special_Find $:=$ Left else Special_Find $:=0$
else

$$
\text { Middle }:=\left\lfloor\frac{\text { Left }+ \text { Right }}{2}\right\rfloor ;
$$

if $A[$ Middle] < Middle then Special_Find $:=$ Special_Find(Middle +1 , Right)
else
Special_Find $:=$ Special_Find(Left, Middle)
end

A Special Binary Search (cont.)

Algorithm Special_Binary_Search (A, n); begin
Position := Special_Find $(1, n)$; end

Stuttering Subsequence

Problem

Given two sequences $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the maximal value of i such that B^{i} is a subsequence of A.

If $B=x y z z x$, then $B^{2}=x x y y z z z z x x, B^{3}=x x x y y y z z z z z z x x x$, etc.
B is a subsequence of A if we can embed B inside A in the same order but with possible holes.

- For example, $B^{2}=x x y y z z z z x x$ is a subsequence of xxzzyyyyxxzzzzzxxx.

Stuttering Subsequence

Problem

Given two sequences $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the maximal value of i such that B^{i} is a subsequence of A.

If $B=x y z z x$, then $B^{2}=x x y y z z z z x x, B^{3}=x x x y y y z z z z z z x x x$, etc.
B is a subsequence of A if we can embed B inside A in the same order but with possible holes.

- For example, $B^{2}=x x y y z z z z x x$ is a subsequence of xxzzyyyyxxzzzzzxxx.
- If B^{j} is a subsequence of A, then B^{i} is a subsequence of A, for $1 \leq i \leq j$.

Stuttering Subsequence

Problem

Given two sequences $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the maximal value of i such that B^{i} is a subsequence of A.

If $B=x y z z x$, then $B^{2}=x x y y z z z z x x, B^{3}=x x x y y y z z z z z z x x x$, etc.
B is a subsequence of A if we can embed B inside A in the same order but with possible holes.

- For example, $B^{2}=x x y y z z z z x x$ is a subsequence of xxzzyyyyxxzzzzzxxx.
- If B^{j} is a subsequence of A, then B^{i} is a subsequence of A, for $1 \leq i \leq j$.
- The maximum value of i cannot exceed $\left\lfloor\frac{n}{m}\right\rfloor$ (or B^{i} would be longer than A).

Stuttering Subsequence (cont.)

Two ways to find the maximum i :
Sequential search: try $1,2,3$, etc. sequentially.

Stuttering Subsequence (cont.)

Two ways to find the maximum i :

- Sequential search: try $1,2,3$, etc. sequentially. Time complexity: $O(n j)$, where j is the maximum value of i.
- Binary search between 1 and $\left\lfloor\frac{n}{m}\right\rfloor$.

Stuttering Subsequence (cont.)

Two ways to find the maximum i :

- Sequential search: try $1,2,3$, etc. sequentially. Time complexity: $O(n j)$, where j is the maximum value of i.
- Binary search between 1 and $\left\lfloor\frac{n}{m}\right\rfloor$. Time complexity: $O\left(n \log \frac{n}{m}\right)$.

Stuttering Subsequence (cont.)

Two ways to find the maximum i :

- Sequential search: try $1,2,3$, etc. sequentially. Time complexity: $O(n j)$, where j is the maximum value of i.
- Binary search between 1 and $\left\lfloor\frac{n}{m}\right\rfloor$. Time complexity: $O\left(n \log \frac{n}{m}\right)$.

Can binary search be applied, if the bound $\left\lfloor\frac{n}{m}\right\rfloor$ is unknown?

Stuttering Subsequence (cont.)

Two ways to find the maximum i :

- Sequential search: try $1,2,3$, etc. sequentially. Time complexity: $O(n j)$, where j is the maximum value of i.
- Binary search between 1 and $\left\lfloor\frac{n}{m}\right\rfloor$. Time complexity: $O\left(n \log \frac{n}{m}\right)$.

Can binary search be applied, if the bound $\left\lfloor\frac{n}{m}\right\rfloor$ is unknown?
Think of the base case in a reversed induction.

Interpolation Search

Figure: Interpolation search.
Source: redrawn from [Manber 1989, Figure 6.4].

Interpolation Search (cont.)

$$
\frac{\overline{L M}}{\overline{L R}}=\frac{\overline{A D}}{\overline{A B}}=\frac{\overline{A E}}{\overline{A C}}=\frac{\overline{B F}}{\overline{B C}}, \text { so }|\overline{L M}|=\frac{|\overline{B F}|}{|\overline{B C}|} \times|\overline{L R}|
$$

Interpolation Search (cont.)

function Int_Find (z, Left, Right) : integer; begin
if $X[$ Left $]=z$ then Int_Find $:=$ Left
else if Left $=$ Right or $X[$ Left $]=X[$ Right $]$ then
Int_Find :=0
else
Next_Guess : $=\left\lceil\right.$ Left $\left.+\frac{(z-X[\text { Leff }](\text { Right-Leff })}{X[\text { Right }]-X[\text { Leff }]}\right\rceil ;$
if $z<X[$ Next_Guess $]$ then
Int_Find := Int_Find(z, Left, Next_Guess - 1)
else
Int_Find $:=\operatorname{Int}$ _Find($(z$, Next_Guess, Right)
end

Interpolation Search (cont.)

Algorithm Interpolation_Search (X, n, z); begin
if $z<X[1]$ or $z>X[n]$ then Position $:=0$ else Position $:=\operatorname{Int}$ _Find $(z, 1, n)$;
end

Sorting

Problem

Given numbers $x_{1}, x_{2}, \cdots, x_{n}$, arrange them in increasing order. In other words, find a sequence of distinct indices $1 \leq i_{1}, i_{2}, \cdots, i_{n} \leq n$, such that $x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{n}}$.

A sorting algorithm is called in-place if no additional work space is used besides the initial array that holds the elements.

Using Balanced Search Trees

Balanced search trees, such as AVL trees, may be used for sorting:

1. Create an empty tree.
2. Insert the numbers one by one to the tree.
3. Traverse the tree and output the numbers.

Using Balanced Search Trees

Balanced search trees, such as AVL trees, may be used for sorting:

1. Create an empty tree.
2. Insert the numbers one by one to the tree.
3. Traverse the tree and output the numbers.

What's the time complexity? Suppose we use an AVL tree.

Radix Sort

Algorithm Straight_Radix (X, n, k); begin
put all elements of X in a queue $G Q$; for $i:=1$ to d do
initialize queue $Q[i]$ to be empty
for $i:=k$ downto 1 do
while $G Q$ is not empty do pop x from $G Q$; $d:=$ the i-th digit of x; insert x into $Q[d]$;
for $t:=1$ to d do insert $Q[t]$ into $G Q$;
for $i:=1$ to n do
pop $X[i]$ from $G Q$
end

Radix Sort

Algorithm Straight_Radix (X, n, k); begin
put all elements of X in a queue $G Q$; for $i:=1$ to d do
initialize queue $Q[i]$ to be empty
for $i:=k$ downto 1 do
while $G Q$ is not empty do pop x from $G Q$; $d:=$ the i-th digit of x; insert x into $Q[d]$;
for $t:=1$ to d do insert $Q[t]$ into $G Q$;
for $i:=1$ to n do
pop $X[i]$ from $G Q$
end
Time complexity: $O(n k)$.

Merge Sort

Algorithm Mergesort (X, n); begin $M_{-} \operatorname{Sort}(1, n)$ end
procedure M_Sort (Left, Right);
begin
if Right - Left $=1$ then
if $X[$ Left $]>X[$ Right $]$ then $\operatorname{swap}(X[$ Left $], X[R i g h t])$
else if Left \neq Right then
Middle $:=\left\lceil\frac{1}{2}(\right.$ Left + Right $\left.)\right\rceil$;
M_Sort(Left, Middle - 1);
M_Sort(Middle, Right);

Merge Sort (cont.)

$$
\begin{aligned}
& i:=\text { Left; } j:=\text { Middle; } k:=0 ; \\
& \text { while }(i \leq \text { Middle }-1) \text { and }(j \leq \text { Right }) \text { do } \\
& \quad k:=k+1 ; \\
& \quad \text { if } X[i] \leq X[j] \text { then } \\
& \quad \text { } \quad \text { (EMP }[k]:=X[i] ; i:=i+1 \\
& \quad \text { else TEMP }[k]:=X[j] ; j:=j+1 ; \\
& \text { if } j>\text { Right then } \\
& \text { for } t:=0 \text { to Middle }-1-i \text { do } \\
& \quad X[\text { Right }-t]:=X[\text { Middle }-1-t] \\
& \text { for } t:=0 \text { to } k-1 \text { do } \\
& \quad X[\text { Left }+t]:=\text { TEMP }[1+t]
\end{aligned}
$$

end

Merge Sort (cont.)

$$
\begin{aligned}
& i:=\text { Left; } j:=\text { Middle; } k:=0 ; \\
& \text { while }(i \leq \text { Middle }-1) \text { and }(j \leq \text { Right }) \text { do } \\
& \quad k:=k+1 ; \\
& \quad \text { if } X[i] \leq X[j] \text { then } \\
& \quad \text { } \quad \text { TEMP }[k]:=X[i] ; i:=i+1 \\
& \quad \text { else TEMP }[k]:=X[j] ; j:=j+1 ; \\
& \text { if } j>\text { Right then } \\
& \text { for } t:=0 \text { to Middle }-1-i \text { do } \\
& \quad X[\text { Right }-t]:=X[\text { Middle }-1-t] \\
& \text { for } t:=0 \text { to } k-1 \text { do } \\
& \quad X[\text { Left }+t]:=\text { TEMP }[1+t]
\end{aligned}
$$

end

Time complexity: $O(n \log n)$.

Merge Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
(2)	(6)	8	5	10	9	12	1	15	7	3	13	4	11	16	14
2	6	(5)	(8)	10	9	12	1	15	7	3	13	4	11	16	14
(2)	(5)	(6)	(8)	10	9	12	1	15	7	3	13	4	11	16	14
2	5	6	8	(9)	(10)	12	1	15	7	3	13	4	11	16	14
2	5	6	8	9	10	(1)	(12)	15	7	3	13	4	11	16	14
2	5	6	8	(1)	(9)	(10)	(12)	15	7	3	13	4	11	16	14
(1)	(2)	(5)	(6)	(8)	(9)	(10)	(12)	15	7	3	13	4	11	16	14
1	2	5	6	8	9	10	12	(7)	(15)	3	13	4	11	16	14
1	2	5	6	8	9	10	12	7	15	(3)	(13)	4	11	16	14
1	2	5	6	8	9	10	12	(3)	(7)	(13)	(15)	4	11	16	14
1	2	5	6	8	9	10	12	3	7	13	15	(4)	(11)	16	14
1	2	5	6	8	9	10	12	3	7	13	15	4	11	(14)	(16)
1	2	5	6	8	9	10	12	3	7	13	15	(4)	(11)	(14)	(16)
1	2	5	6	8	9	10	12	(3)	(4)	(7)	(11)	(13)	(14)	(15)	(16)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)

Figure: An example of mergesort.
Source: redrawn from [Manber 1989, Figure 6.8].

Quick Sort

Algorithm Quicksort (X, n);
begin
Q_Sort(1, n)
end
procedure Q_Sort (Left, Right);
begin
if Left < Right then
Partition(X, Left, Right);
Q_Sort(Left, Middle - 1);
Q_Sort(Middle + 1, Right)
end

Quick Sort

Algorithm Quicksort (X, n);
begin
Q_Sort(1, n)
end
procedure Q_Sort (Left, Right);
begin
if Left < Right then
Partition(X, Left, Right);
Q_Sort(Left, Middle - 1);
Q_Sort(Middle + 1, Right)
end

Time complexity: $O\left(n^{2}\right)$, but $O(n \log n)$ in average

Quick Sort (cont.)

Algorithm Partition(X, Left, Right); begin
pivot :=X[Left];
$L:=$ Left; $R:=$ Right;
while $L<R$ do
while $X[L] \leq$ pivot and $L \leq$ Right do $L:=L+1$; while $X[R]>$ pivot and $R \geq$ Left do $R:=R-1$; if $L<R$ then $\operatorname{swap}(X[L], X[R])$;
Middle $:=R$; $\operatorname{swap}(X[$ Left $], X[$ Middle] $])$ end

Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
6	2	4	5	10	9	12	1	15	7	3	13	8	11	16	14
6	2	4	5	3	9	12	1	15	7	10	13	8	11	16	14
6	2	4	5	3	1	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14

Figure: Partition of an array around the pivot 6.
Source: redrawn from [Manber 1989, Figure 6.10].

Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
1	2	4	5	3	(6)	12	9	15	7	10	13	8	11	16	14
(1)	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
(1)	(2)	4	5	3	(6)	12	9	15	7	10	13	8	11	16	14
(1)	(2)	3	4	5	(6)	12	9	15	7	10	13	8	11	16	14
(1)	(2)	3	4	5	(6)	8	9	11	7	10	12	13	15	16	14
(1)	(2)	3	4	5	(6)	7	8	11	9	10	12	13	15	16	14
(1)	(2)	3	4	5	(6)	7	8	10	9	11	12	13	15	16	14
(1)	(2)	3	4	5	(6)	7	8	9	10	11	12	13	15	16	14
(1)	(2)	3	4	5	(6)	7	8	9	10	11	12	13	15	16	14
(1)	(2)	3	4	5	(6)	7	8	9	10	11	12	13	14	15	16

Figure: An example of quicksort.
Source: redrawn from [Manber 1989, Figure 6.12].

Average-Case Complexity of Quick Sort

When $X[i]$ is selected (at random) as the pivot,

$$
T(n)=n-1+T(i-1)+T(n-i), \text { where } n \geq 2 .
$$

Average-Case Complexity of Quick Sort

When $X[i]$ is selected (at random) as the pivot,

$$
T(n)=n-1+T(i-1)+T(n-i), \text { where } n \geq 2 .
$$

The average running time will then be

$$
\begin{aligned}
T(n) & =n-1+\frac{1}{n} \sum_{i=1}^{n}(T(i-1)+T(n-i)) \\
& =n-1+\frac{1}{n} \sum_{i=1}^{n} T(i-1)+\frac{1}{n} \sum_{i=1}^{n} T(n-i) \\
& =n-1+\frac{1}{n} \sum_{j=0}^{n-1} T(j)+\frac{1}{n} \sum_{j=0}^{n-1} T(j) \\
& =n-1+\frac{2}{n} \sum_{i=0}^{n-1} T(i)
\end{aligned}
$$

- Solving this recurrence relation with full history, $T(n)=O(n \log n)$.

Heap Sort

Algorithm Heapsort (A, n); begin
Build_Heap(A);
for $i:=n$ downto 2 do
$\operatorname{swap}(A[1], A[i])$;
Rearrange_Heap($i-1$)
end

Heap Sort

Algorithm Heapsort (A, n); begin
Build_Heap(A); for $i:=n$ downto 2 do $\operatorname{swap}(A[1], A[i])$; Rearrange_Heap(i - 1) end

Time complexity: $O(n \log n)$

Heap Sort (cont.)

procedure Rearrange_Heap (k);
begin

$$
\text { parent }:=1 \text {; }
$$

child :=2;

$$
\text { while child } \leq k-1 \text { do }
$$

if $A[$ child $]<A[$ child +1$]$ then child := child +1 ;
if $A[$ child $]>A[$ parent $]$ then swap(A[parent], $A[$ child]); parent := child; child $:=2$ * child
else child := k
end

Heap Sort (cont.)

Figure: Top down and bottom up heap construction. Source: redrawn from [Manber 1989, Figure 6.14].

Heap Sort (cont.)

Figure: Top down and bottom up heap construction. Source: redrawn from [Manber 1989, Figure 6.14]. How do the two approaches compare?

Building a Heap Bottom Up

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
6	2	8	5	10	9	12	(14)	15	7	3	13	4	11	16	(1)
6	2	8	5	10	9	(16)	14	15	7	3	13	4	11	(12)	1
6	2	8	5	10	(13)	16	14	15	7	3	(9)	4	11	12	1
6	2	8	5	10	13	16	14	15	7	3	9	4	11	12	1
6	2	8	(15)	10	13	16	14	(5)	7	3	9	4	11	12	1
6	2	(16)	15	10	13	(12)	14	5	7	3	9	4	11	(8)	1
6	(15)	16	(14)	10	13	12	(2)	5	7	3	9	4	11	8	1
(16)	15	(13)	14	10	(9)	12	2	5	7	3	(6)	4	11	8	1

Figure: An example of building a heap bottom up.
Source: adapted from [Manber 1989, Figure 6.15].

A Lower Bound for Sorting

- A lower bound for a particular problem is a proof that no algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
Decision trees model computations performed by comparison-based algorithms.

A Lower Bound for Sorting

- A lower bound for a particular problem is a proof that no algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
Decision trees model computations performed by comparison-based algorithms.

Theorem (Theorem 6.1)

Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.

A Lower Bound for Sorting

- A lower bound for a particular problem is a proof that no algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
Decision trees model computations performed by comparison-based algorithms.

Theorem (Theorem 6.1)

Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.
Proof idea: there must be at least n ! leaves, one for each possible outcome.

A Lower Bound for Sorting

- A lower bound for a particular problem is a proof that no algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
Decision trees model computations performed by comparison-based algorithms.

Theorem (Theorem 6.1)

Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.
Proof idea: there must be at least n ! leaves, one for each possible outcome.

Is the lower bound contradictory to the time complexity of radix sort?

Order Statistics: Minimum and Maximum

Problem

Find the maximum and minimum elements in a given sequence.

Order Statistics: Minimum and Maximum

Problem

Find the maximum and minimum elements in a given sequence.

- The obvious solution requires $(n-1)+(n-2)(=2 n-3)$ comparisons between elements.

Order Statistics: Minimum and Maximum

Problem

Find the maximum and minimum elements in a given sequence.

- The obvious solution requires $(n-1)+(n-2)(=2 n-3)$ comparisons between elements.
Can we do better? Which comparisons could have been avoided?

Order Statistics: Kth-Smallest

Problem

Given a sequence $S=x_{1}, x_{2}, \cdots, x_{n}$ of elements, and an integer k such that $1 \leq k \leq n$, find the k th-smallest element in S.

Order Statistics: Kth-Smallest (cont.)

procedure Select (Left, Right, k);
begin
if Left $=$ Right then
Select := Left
else Partition(X, Left, Right);
let Middle be the output of Partition;
if Middle - Left $+1 \geq k$ then
Select(Left, Middle, k)
else

$$
\text { Select(Middle + 1, Right, } k-(\text { Middle }- \text { Left }+1))
$$

end

Order Statistics: Kth-Smallest (cont.)

The nested "if" statement may be simplified:
procedure Select (Left, Right, k); begin
if Left $=$ Right then
Select := Left
else Partition(X, Left, Right);
let Middle be the output of Partition; if Middle $\geq k$ then Select(Left, Middle, k) else Select(Middle + 1, Right, k) end

Order Statistics: Kth-Smallest (cont.)

Algorithm Selection (X, n, k); begin
if $(k<1)$ or $(k>n)$ then print "error" else $S:=\operatorname{Select}(1, n, k)$
end

Finding a Majority

Problem

Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a majority in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.

Finding a Majority

Problem

Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a majority in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.

Idea: compare any two numbers in the sequence. What can we conclude if they are not equal?

Finding a Majority

Problem

Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a majority in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.

Idea: compare any two numbers in the sequence. What can we conclude if they are not equal?

What if they are equal?

Finding a Majority (cont.)

Algorithm Majority (X, n); begin

$$
C:=X[1] ; \quad M:=1 ;
$$

$$
\text { for } i:=2 \text { to } n \text { do }
$$

if $M=0$ then

$$
C:=X[i] ; \quad M:=1
$$

else
if $C=X[i]$ then $M:=M+1$ else $M:=M-1$;

Finding a Majority (cont.)

if $M=0$ then Majority $:=-1$ else

$$
\text { Count }:=0
$$

$$
\text { for } i:=1 \text { to } n \text { do }
$$

$$
\text { if } X[i]=C \text { then Count }:=\text { Count }+1
$$

if Count $>n / 2$ then Majority $:=C$
else Majority $:=-1$
end

