Dynamic Programming (Based on [Cormen et al. 2009])

Yih-Kuen Tsay
Department of Information Management
National Taiwan University

Design Methods

Greedy
Huffman's encoding algorithm, Dijkstra's algorithm, Prim's algorithm, etc.

Design Methods

Greedy
, Huffman's encoding algorithm, Dijkstra's algorithm, Prim's algorithm, etc.

- Divide-and-Conquer

Binary search, merge sort, quick sort, etc.

Design Methods

Greedy
, Huffman's encoding algorithm, Dijkstra's algorithm, Prim's algorithm, etc.

- Divide-and-Conquer

Binary search, merge sort, quick sort, etc.
Dynamic Programming

Design Methods

Greedy
, Huffman's encoding algorithm, Dijkstra's algorithm, Prim's algorithm, etc.

- Divide-and-Conquer

Binary search, merge sort, quick sort, etc.
Dynamic Programming

- Branch-and-Bound

Principles of Dynamic Programming

Property of Optimal Substructure (Principle of Optimality): An optimal solution to a problem contains optimal solutions to its subproblems.

- A particular subproblem or subsubproblem typically recurs while one tries different decompositions of the original problem.
- To reduce running time, optimal solutions to subproblems are computed only once and stored (in an array) for subsequent uses.

Development by Dynamic Programming

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up fashion.
4. Construct an optimal solution from computed information.

Matrix-Chain Multiplication

Problem

Given a chain $A_{1}, A_{2}, \cdots, A_{n}$ of matrices where $A_{i}, 1 \leq i \leq n$, has dimension $p_{i-1} \times p_{i}$, fully parenthesize (i.e., find a way to evaluate) the product $A_{1} A_{2} \cdots A_{n}$ such that the number of scalar multiplications is minimum.

Why is dynamic programming a feasible approach?

Matrix-Chain Multiplication

Problem

Given a chain $A_{1}, A_{2}, \cdots, A_{n}$ of matrices where $A_{i}, 1 \leq i \leq n$, has dimension $p_{i-1} \times p_{i}$, fully parenthesize (i.e., find a way to evaluate) the product $A_{1} A_{2} \cdots A_{n}$ such that the number of scalar multiplications is minimum.

Why is dynamic programming a feasible approach?

- To evaluate $A_{1} A_{2} \cdots A_{n}$, one first has to evaluate $A_{1} A_{2} \cdots A_{k}$ and $A_{k+1} A_{k+2} \cdots A_{n}$ for some k and then multiply the two resulting matrices.
- An optimal way for evaluating $A_{1} A_{2} \cdots A_{n}$ must contain optimal ways for evaluating $A_{1} A_{2} \cdots A_{k}$ and $A_{k+1} A_{k+2} \cdots A_{n}$ for some k.

Matrix-Chain Multiplication (cont.)

Let $m[i, j]$ be the minimum number of scalar multiplications needed to compute $A_{i} A_{i+1} \cdots A_{j}$, where $1 \leq i \leq j \leq n$.

$$
m[i, j]= \begin{cases}0 & \text { if } i=j \\ \min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { if } i<j\end{cases}
$$

Matrix-Chain Multiplication (cont.)

Algorithm Matrix_Chain_Order(n, p); begin

$$
\begin{aligned}
& \text { for } i:=1 \text { to } n \text { do } \\
& m[i, i]:=0 ; \\
& \text { for } I:=2 \text { to } n \text { do }\{l \text { is the chain length }\} \\
& \text { for } i:=1 \text { to }(n-I+1) \text { do } \\
& j:=i+I-1 ; \\
& m[i, j]:=\infty ; \\
& \quad \text { for } k:=i \text { to }(j-1) \text { do } \\
& \quad \text { if } m[i, k]+m[k+1, j]+p[i-1] p[k] p[j]<m[i, j] \text { then } \\
& \quad m[i, j]:=m[i, k]+m[k+1, j]+p[i-1] p[k] p[j]
\end{aligned}
$$

end

Recursive Implementation

```
Algorithm Recursive_Matrix_Chain(p,i,j);
begin
    if i=j then return 0;
    m[i,j]:= 吕
    for k:= i to (j-1) do
        q:= Recursive_Matrix_Chain(p,i,k)+
                Recursive_Matrix_Chain(p,k+1,j)+p[i-1]p[k]p[j];
    if }q<m[i,j]\mathrm{ then
        m[i,j]:= q;
    return m[i,j]
end
```


Recursive Implementation (cont.)

Figure: The recursion tree for the computation of
Recursive_Matrix_Chain $(p, 1,4)$. The computations performed in a shaded subtree are replaced by a table lookup.

Source: redrawn from [Cormen et al. 2006, Figure 15.5].

Recursion with Memoization

Algorithm Memoized_Matrix_Chain (n, p); begin

for $i:=1$ to n do
for $j:=i$ to n do $m[i, j]:=\infty ;$

return Lookup_Matrix_Chain(p, i, n) end

Recursion with Memoization (cont.)

Function Lookup_Matrix_Chain (p, i, j); begin
if $m[i, j]<\infty$ then return $m[i, j]$;
if $i=j$ then

$$
m[i, j]:=0 ;
$$

else

$$
\text { for } k:=i \text { to }(j-1) \text { do }
$$

$$
\begin{aligned}
& q:= \text { Lookup_Matrix_Chain }(p, i, k)+ \\
& \text { Lookup_Matrix_Chain }(p, k+1, j)+p[i-1] p[k] p[j] ; \\
& \text { if } q<m[i, j] \text { then } \\
& m[i, j]:=q
\end{aligned}
$$

return $m[i, j]$
end

Single-Source Shortest Paths

Problem

Given a weighted directed graph $G=(V, E)$ with no negative-weight cycles and a vertex v, find (the lengths of) the shortest paths from v to all other vertices.

Notice that edges with negative weights are permitted; so, Dijkstra's algorithm does not work here.
A shortest path from v to any other vertex u contains at most $n-1$ edges.
A shortest path from v to u with at most $k(>1)$ edges is either (1) a known shortest path from v to u with at most $k-1$ edges or (2) composed of a shortest path from v to u^{\prime} with at most $k-1$ edges and the edge from u^{\prime} to u, for some u^{\prime}.

Single-Source Shortest Paths (cont.)

Denote by $D^{\prime}(u)$ the length of a shortest path from v to u containing at most / edges; particularly, $D^{n-1}(u)$ is the length of a shortest path from v to u (with no restrictions).

$$
D^{1}(u)= \begin{cases}\text { length }(v, u) & \text { if }(v, u) \in E \\ 0 & \text { if } u=v \\ \infty & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
D^{\prime}(u)= & \min \left\{D^{\prime-1}(u), \min _{\left(u^{\prime}, u\right) \in E}\left\{D^{\prime-1}\left(u^{\prime}\right)+\text { length }\left(u^{\prime}, u\right)\right\}\right\}, \\
& 2 \leq I \leq n-1
\end{aligned}
$$

Single-Source Shortest Paths (cont.)

Algorithm Single_Source_Shortest_Paths(length); begin
$D[v]:=0 ;$
for all $u \neq v$ do
if $(v, u) \in E$ then
$D[u]:=\operatorname{length}(v, u)$
else $D[u]:=\infty$;
for $k:=2$ to $n-1$ do
for all $u \neq v$ do
for all u^{\prime} such $\left(u^{\prime}, u\right) \in E$ do

$$
\begin{gathered}
\text { if } D\left[u^{\prime}\right]+\text { length }\left[u^{\prime}, u\right]<D[u] \text { then } \\
D[u]:=D\left[u^{\prime}\right]+\text { length }\left[u^{\prime}, u\right]
\end{gathered}
$$

end

All-Pairs Shortest Paths

Problem

Given a weighted directed graph $G=(V, E)$ with no negative-weight cycles, find (the lengths of) the shortest paths between all pairs of vertices.

Consider a shortest path from v_{i} to v_{j} and an arbitrary intermediate vertex v_{k} (if any) on this path.

- The subpath from v_{i} to v_{k} must also be a shortest path from v_{i} to v_{k}; analogously for the subpath from v_{k} to v_{j}.

All-Pairs Shortest Paths (cont.)

Index the vertices from 1 through n.
Denote by $W^{k}(i, j)$ the length of a shortest path from v_{i} to v_{j} going through no vertex of index greater than k, where $1 \leq i, j \leq n$ and $0 \leq k \leq n$; particularly, $W^{n}(i, j)$ is the length of a shortest path from v_{i} to v_{j}.

$$
W^{0}(i, j)= \begin{cases}\text { length }(i, j) & \text { if }(i, j) \in E \\ 0 & \text { if } i=j \\ \infty & \text { otherwise }\end{cases}
$$

$$
W^{k}(i, j)=\min \left\{W^{k-1}(i, j), W^{k-1}(i, k)+W^{k-1}(k, j)\right\}, 1 \leq k \leq n
$$

All-Pairs Shortest Paths (cont.)

Algorithm All_Pairs_Shortest_Paths(length); begin

$$
\begin{aligned}
& \text { for } i:=1 \text { to } n \text { do } \\
& \text { for } j:=1 \text { to } n \text { do } \\
& \text { if }(i, j) \in E \text { then } W[i, j]:=\operatorname{length}(i, j) \\
& \quad \text { else } W[i, j]:=\infty ; \\
& \text { for } i:=1 \text { to } n \text { do } W[i, i]:=0 ; \\
& \text { for } k:=1 \text { to } n \text { do } \\
& \text { for } i:=1 \text { to } n \text { do } \\
& \quad \text { for } j:=1 \text { to } n \text { do } \\
& \quad \text { if } W[i, k]+W[k, j]<W[i, j] \text { then } \\
& \\
& \quad W[i, j]:=W[i, k]+W[k, j]
\end{aligned}
$$

end

