
Algorithms [Compiled on November 3, 2022] Fall 2022

Suggested Solutions to Midterm Problems

1. Prove by induction that every natural number greater than or equal to 12 is a non-negative
linear combination of 4 and 5, i.e., for every n ∈ N, if n ≥ 12, then there exist a, b ∈ N
s.t. n = 4a + 5b (where N is the set of all natural numbers, including 0).

Solution. The proof is by induction on n.

Base case (n = 12): in this case, n = 12 = 4 × 3 + 5 × 0. So, the problem statement is
true for n = 12.

Inductive step (n > 12): from the induction hypothesis we have that n − 1 = 4a + 5b,
for some a, b ∈ N. If a > 0, then n = (n − 1) + 1 = 4a + 5b + 1 = 4a + 5b + (5 − 4) =
4(a− 1) + 5(b + 1). Otherwise (a = 0), since n > 12 and n− 1 > 11, n− 1 = 5b for some
b ≥ 3 and n = 5b + 1 = 5b + (4 × 4 − 5 × 3) = 4 × 4 + 5(b − 3). Therefore, the problem
statement is also true for n > 12. 2

2. The set of all full binary trees that store non-negative integer key values may be defined
inductively as follows.

(a) FBT (k,⊥,⊥, 0), for any non-negative integer k, is a full binary tree of height 0.

(b) If tl and tr are full binary trees of height h, then FBT (k, tl, tr, h + 1), for any non-
negative integer k, is a full binary tree of height h + 1.

Please give a similar inductive definition for the set of all complete binary trees (of the
form CBT (·, ·, ·, ·)) that store non-negative integer key values; you may reuse FBT in
parts of your definition. For instance, CBT (6,⊥,⊥, 0) is a single-node complete binary
tree storing key value 6 and CBT (8,CBT (6,⊥,⊥, 0),⊥, 1) is a complete binary tree with
two nodes — the root and its left child, storing key values 8 and 6 repsectively. Pictorially,
they may be depicted as below.

6

⊥⊥

8

⊥6

⊥⊥

Solution. The set of all (non-empty) complete binary trees may be defined as follows:

(a) CBT (k,⊥,⊥, 0), for any non-negative integer k, is a complete binary tree of height
0, and
CBT (k1,CBT (k2,⊥,⊥, 0),⊥, 1), for any non-negative integers k1 and k2, is a (proper)
complete binary tree of height 1.

(b) Suppose tl and tr are complete binary trees.

i. If tl is a full binary tree of height h and tr is a complete binary tree of height h,
then CBT (k, tl, tr, h + 1), for any non-negative integer k, is a complete binary
tree of height h + 1.

1

ii. If tl is a complete tree of height h and tr is a full binary tree of height h − 1,
then CBT (k, tl, tr, h + 1), for any non-negative integer k, is a complete binary
tree of height h + 1.

Here by saying “a complete binary tree t is a full binary tree,” we mean that, when every
occurrence of CBT in t = CBT (·, ·, ·, ·) is replaced by FBT , it is indeed a full binary tree
according to the definition of FBT (·, ·, ·, ·). (Mathematically, a CBT is a full binary tree
if it is isomorphic to some FBT.)

Note: as the definition is intended to exclude the empty tree as a complete binary tree,
it includes as a base case the (proper) complete binary tree (with two nodes) of height 1,
to avoid the need, in the inductive step, of treating the special case of a complete binary
tree without a right child. 2

3. Consider bounding summations by integrals. We already know that, if f(x) is monotoni-
cally increasing, then

n∑
i=1

f(i) ≤
∫ n+1

1
f(x)dx.

(a) The sum may also be bounded from below as follows:∫ n

0
f(x)dx ≤

n∑
i=1

f(i).

Show that this is indeed the case.

Solution. Given that f(x) is monotonically increasing, we have∫ 1
0 f(x)dx ≤ f(1)∫ 2
1 f(x)dx ≤ f(2)∫ 3
2 f(x)dx ≤ f(3)

· · ·∫ n−1
n−2 f(x)dx ≤ f(n− 1)∫ n
n−1 f(x)dx ≤ f(n)∫ n

0 f(x)dx ≤
∑n

i=1 f(i)

So, the lower bound for the summation
∑n

i=1 f(i) is correct. This is also easily seen
by comparing the areas (on the R × R plane) defined by the formulae on the two
sides. As shown in the following diagram, the integral

∫ n
0 f(x)dx equals the area

under the curve that is shaded with thin parallel lines. The area is apparently no
larger than the total area of the vertical bars which represents

∑n
i=1 f(i).

2

x

f(x)

0 1 2 3 n−2 n−1 n

...

2

(b) Prove, using this bounding technique, that
∑n

i=1
1
i = Θ(log n). Note that 1

i actually
decreases when i increases.

Solution. As 1
i is monotonically decreasing and the bounding technique cannot be directly

applied, we rewrite the sum as
∑n

i=1
1

(n+1)−i . Now we have a monotonically increasing

f(x) = 1
(n+1)−x , for x < n + 1. We know that

∫
1

(n+1)−xdx = − ln((n + 1) − x), for
x < n + 1.∑n

i=1
1
i =

∑n
i=1

1
(n+1)−i ≥

∫ n
0

1
(n+1)−xdx = − ln((n + 1) − n) − (− ln((n + 1) − 0)) =

ln(n + 1) ≥ lnn ≥ 1
log e log n. So,

∑n
i=1

1
i = Ω(log n).∑n

i=1
1
i =

∑n
i=1

1
(n+1)−i = 1 +

∑n−1
i=1

1
(n+1)−i ≤ 1 +

∫ n
1

1
(n+1)−xdx = 1 + (− ln((n + 1) −

n) − (− ln((n + 1) − 1))) = 1 + lnn ≤ 1
log e log n + 1

log e log n ≤ 2
log e log n (for n ≥ 3). So,∑n

i=1
1
i = O(log n).

It follows that
∑n

i=1
1
i = Θ(log n). 2

4. Show all intermediate and the final AVL trees formed by inserting the numbers 2, 6, 7, 1,
5, 3, and 4 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution.

Insert 2:
2

Insert 6:

2

6
Insert 7:

2

6

7

Single rotation at 6:

6

72
Insert 1:

6

72

1

3

Insert 5:

6

72

51
Insert 3:

6

72

5

3

1

Double rotation at 6:

5

6

7

2

31

Insert 4:

5

6

7

2

3

4

1

2

5. Below is the pseudocode of the binary search algorithm we discussed in class. Would the
code still be correct if we change the assignment “Middle := dLeft+Right

2 e” to “Middle :=

bLeft+Right
2 c” for Middle to take instead the largest integer less than or equal to Left+Right

2 ?
Please justify your answer. If the modified code is incorrect, what other changes must be
made accordingly?

function Find (z,Left ,Right) : integer ;
begin

if Left = Right then
if X[Left] = z then Find := Left
else Find := 0

else

Middle := dLeft+Right
2 e;

if z < X[Middle] then
Find := Find(z,Left ,Middle − 1)

else
Find := Find(z,Middle,Right)

end

Algorithm Binary Search (X,n, z);
begin

Position := Find(z, 1, n);
end

4

Solution. The code would be incorrect, if just that change is made. Consider X[1..2] =
[7, 9], an array with two numbers 7 and 9. Suppose we invoke Binary Search(X, 2, 6)
to find out whether 6 is in X. The call in turns invokes Find(6, 1, 2), whose execution
will set Middle to bLeft+Right

2 c = b1+2
2 c = 1. Since z = 6 < 7 = X[1] = X[Middle], the

execution will invoke Find(z,Left ,Middle − 1), i.e., Find(6, 1, 0), which will result in an
access to X[0], an erroreous behavior.

The nested conditional statement should be modified accordingly as follows.

function Find (z,Left ,Right) : integer ;
begin

if Left = Right then
. . .

else

Middle := bLeft+Right
2 c;

if z ≤ X[Middle] then
Find := Find(z,Left ,Middle)

else
Find := Find(z,Middle + 1,Right)

end

2

6. Given the array below as input [to the Mergesort algorithm], what are the contents of
array TEMP after the merge part is executed for the first time and what are the contents
of TEMP when the algorithm terminates? Assume that each entry of TEMP has been
initialized to 0 when the algorithm starts.

1 2 3 4 5 6 7 8 9 10 11 12

8 3 2 6 5 9 10 7 1 12 4 11

Solution. The contents of array TEMP after the merge part is executed for the first time:

1 2 3 4 5 6 7 8 9 10 11 12

2 3 0 0 0 0 0 0 0 0 0 0

The contents of array TEMP when the algorithm terminates:

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 0 0 0 2

7. Please present in suitable pseudocode the algorithm (discussed in class) for rearranging
an array A[1..n] of n integers into a max heap using the bottom-up approach.

Solution.

Algorithm Build_Heap(A,n);

begin

for i := n DIV 2 downto 1 do

parent := i;

child1 := 2*parent;

child2 := 2*parent + 1;

if child2 > n then child2 := child1;

5

if A[child1]>A[child2] then maxchild := child1

else maxchild := child2;

while maxchild<=n and A[parent]<A[maxchild] do

swap(A[parent],A[maxchild]);

parent := maxchild;

child1 := 2*parent;

child2 := 2*parent + 1;

if child2 > n then child2 := child1;

if A[child1]>A[child2] then maxchild := child1

else maxchild := child2

end

end

end

2

8. We have studied in class an algorithm, outlined again below, for finding the minimum and
the maximum of a sequence of numbers.

Compare the first two numbers (assuming the input sequence is of even length).
Set min to be the smaller of the two and max the larger. Compare the next
pair of numbers and then compare the smaller with min and the larger with
max . Update min and max accordingly. Continue until we have exhausted the
sequence.

Draw a decision tree of the algorithm for the case of an input sequence of four distinct
numbers. In the decision tree, you must indicate (1) which two elements of the original
sequence are compared in each internal node and (2) the output (the values of min and
max respectively) in each leaf. Please use X1, X2, X3, X4 to refer to the numbers (in this
order) in the original input sequence.

Solution.

X1 : X2

analogous
to the left

X3 : X4

X1 : X4

X2 : X3

min=X4
max=X2

min=X4
max=X3

X2 : X3

min=X1
max=X2

min=X1
max=X3

X1 : X3

X2 : X4

min=X3
max=X2

min=X3
max=X4

X2 : X4

min=X1
max=X2

min=X1
max=X4

< >

2

9. Consider the text data compression problem we have discussed in class; the problem
statement is given below.

6

Given a text (a sequence of characters), find an encoding for the characters
that satisfies the prefix constraint and that minimizes the total number of bits
needed to encode the text.

Prove that the two characters with the lowest frequencies must be among the deepest
leaves (farthest from the root) in the final code tree. (Hint: proof by contradiction.)

Solution. Denote the characters in the text by c1, c2, · · ·, cn and their frequencies by f1,
f2, · · ·, fn. Given an encoding E in which a bit string si represents ci, the length (number
of bits) of the text encoded by using E is

∑n
i=1 |si| · fi. In the code tree corresponding

to E, the depth of the leaf representing character ci equals the length of the encoding si
for ci. We observe that at the deepest level in the code there must be at least two leaves;
otherwise, we may remove the only leaf and take its parent as a new leaf, obtaining a
better code tree.

Assume toward a contradiction that one of the two characters, say cj , with the lowest
frequencies is at a level shallower than that of a character, say ck, with a higher frequency
such that |sj | < |sk|. Since |sj | < |sk| and fj < fk, (|sk| − |sj |) · fk > (|sk| − |sj |) · fj and
|sj | · fj + |sk| · fk > |sj | · fk + |sk| · fj . It follows that

n∑
i=1

|si| · fi > (

n∑
i=1,i 6=j,i6=k

|si| · fi) + |sj | · fk + |sk| · fj .

If we swap the characters cj and ck, then we will get a better code tree, a contradiction.
2

10. Consider the next table as in the KMP algorithm for string B[1..9] = abaababaa.

1 2 3 4 5 6 7 8 9

a b a a b a b a a

−1 0 0 1 1 2 3 2 3

Suppose that, during an execution of the KMP algorithm, B[6] (which is an a) is being
compared with a letter in A, say A[i], which is not an a and so the matching fails. The
algorithm will next try to compare B[next [6] + 1], i.e., B[3] which is also an a, with A[i].
The matching is bound to fail for the same reason. This comparison could have been
avoided, as we know from B itself that B[6] equals B[3] and, if B[6] does not match A[i],
then B[3] certainly will not, either. B[5], B[8], and B[9] all have the same problem, but
B[7] does not.

Please adapt the computation of the next table, so that such wasted comparisons can be
avoided. Also, please give the values of the next table for the string B[1..9] = abbaabbaa,
according to the adaptation.

Solution.

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

7

j := next[j] + 1;
next[i] := j;

// Add the following five lines for optimization.
for i := m down to 2 do

j := next[i] + 1;
while B[i] = B[j] and j > 0 do

j := next[j] + 1;
next[i] := j − 1;

end

For B[1..9] = abbaabbaa, the original next :

1 2 3 4 5 6 7 8 9

a b b a a b b a a

−1 0 0 0 1 1 2 3 4

The new next :
1 2 3 4 5 6 7 8 9

a b b a a b b a a

−1 0 0 −1 1 0 0 −1 1

2

Appendix

• The Mergesort algorithm:

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d 1

2
(Left+Right)e;

M Sort(Left,Middle− 1);
M Sort(Middle,Right);
// the merge part
i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i+ 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle− 1− i do

X[Right− t] := X[Middle− 1− t]
for t := 0 to k − 1 do

X[Left+ t] := TEMP [1 + t]
end

• The KMP algorithm (assuming next):

Algorithm String Match (A,n,B,m);
begin

8

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i+ 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i+ 1;
if j = m+ 1 then Start := i−m

end

• The algorithm for computing the next table in the KMP algorithm:

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

9

