Algorithms 2022: Searching and Sorting

(Based on [Manber 1989])
Yih-Kuen Tsay
September 30, 2022

1 Binary Search

Searching a Sorted Sequence

Problem 1. Let $x_{1}, x_{2}, \cdots, x_{n}$ be a sequence of real numbers such that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Given a real number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that $x_{i}=z$.

Idea: cut the search space in half by asking only one question.

$$
\left\{\begin{array}{l}
T(1)=O(1) \\
T(n)=T\left(\frac{n}{2}\right)+O(1), n \geq 2
\end{array}\right.
$$

Time complexity: $O(\log n)$ (applying the master theorem with $a=1, b=2, k=0$, and $b^{k}=1=a$).

Binary Search

function Find (z, Left, Right) : integer;
begin
if Left $=$ Right then
if $X[$ Left $]=z$ then Find $:=$ Left
else Find $:=0$
else
Middle : $=\left\lceil\frac{\text { Left }+ \text { Right }}{2}\right\rceil$;
if $z<X$ [Middle] then
Find $:=\operatorname{Find}(z$, Left, Middle - 1)
else
Find $:=\operatorname{Find}(z$, Middle, Right $)$
end
Algorithm Binary_Search (X, n, z);
begin
Position $:=\operatorname{Find}(z, 1, n) ;$
end

Binary Search: Alternative

function Find (z,Left, Right) : integer;

begin

if Left $>$ Right then
Find $:=0$
else
Middle $:=\left\lceil\frac{\text { Left }+ \text { Right }}{2}\right\rceil$;
if $z=X[$ Middle $]$ then
Find $:=$ Middle
else if $z<X[$ Middle] then
Find $:=\operatorname{Find}(z$, Left, Middle - 1)
else
Find $:=\operatorname{Find}(z$, Middle +1, Right $)$
end
How do the two algorithms compare?

1.1 Cyclically Sorted Sequence

Searching a Cyclically Sorted Sequence
Problem 2. Given a cyclically sorted list, find the position of the minimal element in the list (we assume, for simplicity, that this position is unique).

- Example 1:

$$
-\left[\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
{\left[\begin{array}{l}
2
\end{array}\right.} & 6 & 7 & 0 & 1 & 2 & 3 & 4 &]
\end{array}\right.
$$

- The 4th is the minimal element.
- Example 2:

$$
-\left[\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
{[} & 1 & 2 & 3 & 4 & 5 & 6 & 7 &]
\end{array}\right.
$$

- The 1st is the minimal element.
- To cut the search space in half, what question should we ask?
$/^{*}$ If $X[$ Middle $]<X[$ Right $]$, then the minimal is in the left half (including $X[$ Middle $]$; otherwise, it is in the right half (excluding $X[$ Middle] $) .{ }^{*} /$

Cyclic Binary Search

```
Algorithm Cyclic_Binary_Search (X,n);
begin
    Position := Cyclic_Find(1,n);
end
function Cyclic_Find (Left,Right): integer;
begin
    if Left = Right then Cyclic_Find := Left
    else
        Middle:=\lfloor\frac{Left+Right }{2}\rfloor;
        if X[Middle] < X [Right ] then
            Cyclic_Find :=Cyclic_Find(Left,Middle)
```

```
        else
    Cyclic_Find :=Cyclic_Find(Middle + 1,Right)
```

end

1.2 "Fixpoints"

"Fixpoints"

Problem 3. Given a sorted sequence of distinct integers $a_{1}, a_{2}, \cdots, a_{n}$, determine whether there exists an index i such that $a_{i}=i$.

- Example 1:

$$
\begin{aligned}
& \left.-\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
-1 & 1 & 2 & 4 & 5 & 6 & 8 & 9
\end{array}\right] \\
& \left.-a_{4}=4 \text { (there are more } \ldots\right) .
\end{aligned}
$$

- Example 2:
$-\left[\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ -1 & 1 & 2 & 5 & 6 & 8 & 9 & 10\end{array}\right]$
- There is no i such that $a_{i}=i$.
- Again, can we cut the search space in half by asking only one question?
/* As the numbers are distinct, they increase or decrease at least as fast as the indices (which always increase or decrease by one). If $X[M i d d l e]<M i d d l e$, then the fixpoint (if it exists) must be in the left half (excluding $X[M i d d l e])$; otherwise, it must be in the right half (including $X[M i d d l e])$. */

A Special Binary Search

```
function Special_Find (Left,Right) : integer;
begin
    if Left = Right then
        if A[Left]=Left then Special_Find :=Left
        else Special_Find:=0
    else
        Middle :=\\frac{Left+Right}{2}\rfloor;
        if A[Middle] < Middle then
            Special_Find := Special_Find(Middle + 1,Right)
            else
            Special_Find := Special_Find(Left,Middle)
end
```


A Special Binary Search (cont.)

```
Algorithm Special_Binary_Search (A,n);
begin
    Position := Special_Find(1,n);
end
```


1.3 Stuttering Subsequence

Stuttering Subsequence

Problem 4. Given two sequences $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the maximal value of i such that B^{i} is a subsequence of A.

- If $B=x y z z x$, then $B^{2}=x x y y z z z z x x, B^{3}=x x x y y y z z z z z z x x x$, etc.
- B is a subsequence of A if we can embed B inside A in the same order but with possible holes.
- For example, $B^{2}=x x y y z z z z x x$ is a subsequence of $x x z z y y y y x x z z z z z x x x$.
- If B^{j} is a subsequence of A, then B^{i} is a subsequence of A, for $1 \leq i \leq j$.
- The maximum value of i cannot exceed $\left\lfloor\frac{n}{m}\right\rfloor$ (or B^{i} would be longer than A).

Stuttering Subsequence (cont.)

Two ways to find the maximum i :

- Sequential search: try $1,2,3$, etc. sequentially.

Time complexity: $O(n j)$, where j is the maximum value of i.

- Binary search between 1 and $\left\lfloor\frac{n}{m}\right\rfloor$.

Time complexity: $O\left(n \log \frac{n}{m}\right)$.

Can binary search be applied, if the bound $\left\lfloor\frac{n}{m}\right\rfloor$ is unknown?
Think of the base case in a reversed induction.
/* $\operatorname{Try} 2^{0}, 2^{1}, 2^{2}, \cdots, 2^{k-1}$, and 2^{k} sequentially. If the target falls between 2^{k-1} and 2^{k}, apply binary search within that region. */

2 Interpolation Search

Interpolation Search

Figure: Interpolation search.
Source: redrawn from [Manber 1989, Figure 6.4].

Interpolation Search (cont.)

Interpolation Search (cont.)
function Int_Find (z, Left, Right) : integer;
begin
if $X[$ Left $]=z$ then Int_Find $:=$ Left
else if Left $=$ Right or $X[L e f t]=X[$ Right $]$ then Int_Find $:=0$
else
Next_Guess $:=\left\lceil\right.$ Left $\left.+\frac{(z-X[\text { Left }])(\text { Right-Left })}{X[\text { Right }]-X[\text { Left }]}\right\rceil ;$
if $z<X[$ Next_Guess $]$ then
Int_Find $:=$ Int_Find $(z$, Left, Next_Guess - 1)
else
Int_Find $:=$ Int_Find $(z$, Next_Guess, Right $)$
end
$/^{*}$ Next_Guess - Left $=|\overline{L M}|=\frac{|\overline{B F}|}{|\overline{B C}|} \times|\overline{L R}| \approx\left\lceil\frac{(z-X[\text { Left }])(\text { Right-Left })}{X[\text { Right }]-X[\text { Left }]}\right\rceil * /$
Interpolation Search (cont.)

```
Algorithm Interpolation_Search (X,n,z);
begin
    if z<X[1] or z>X[n] then Position :=0
    else Position := Int_Find(z,1,n);
end
```


3 Sorting

Sorting

Problem 5. Given n numbers $x_{1}, x_{2}, \cdots, x_{n}$, arrange them in increasing order. In other words, find a sequence of distinct indices $1 \leq i_{1}, i_{2}, \cdots, i_{n} \leq n$, such that $x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{n}}$.

A sorting algorithm is called in-place if no additional work space is used besides the initial array that holds the elements.

3.1 Using Balanced Search Trees

Using Balanced Search Trees

- Balanced search trees, such as AVL trees, may be used for sorting:

1. Create an empty tree.
2. Insert the numbers one by one to the tree.
3. Traverse the tree and output the numbers.

- What's the time complexity? Suppose we use an AVL tree.

3.2 Radix Sort

Radix Sort

```
Algorithm Straight_Radix \((X, n, k)\);
begin
    put all elements of \(X\) in a queue \(G Q\);
    for \(i:=1\) to \(d\) do
        initialize queue \(Q[i]\) to be empty
    for \(i:=k\) downto 1 do
            while \(G Q\) is not empty do
                pop \(x\) from \(G Q\);
                    \(d:=\) the \(i\)-th digit of \(x\);
                    insert \(x\) into \(Q[d]\);
            for \(t:=1\) to \(d\) do
                insert \(Q[t]\) into \(G Q\);
    for \(i:=1\) to \(n\) do
            pop \(X[i]\) from \(G Q\)
end
```

Time complexity: $O(n k)$.

3.3 Merge Sort

Merge Sort

```
Algorithm Mergesort ( \(X, n\) );
begin \(M_{-} \operatorname{Sort}(1, n)\) end
procedure M_Sort (Left, Right);
begin
    if Right - Left \(=1\) then
        if \(X[\) Left \(]>X[R i g h t]\) then \(\operatorname{swap}(X[\) Left \(], X[R i g h t])\)
    else if Left \(\neq\) Right then
        Middle \(:=\left\lceil\frac{1}{2}(\right.\) Left + Right \(\left.)\right\rceil ;\)
        M_Sort(Left, Middle - 1);
        M_Sort(Middle, Right);
```


Merge Sort (cont.)

$$
\begin{aligned}
& i:=\text { Left; } j:=\text { Middle } ; k:=0 ; \\
& \text { while }(i \leq M i d d l e-1) \text { and }(j \leq \text { Right }) \text { do } \\
& \quad k:=k+1 ; \\
& \quad \text { if } X[i] \leq X[j] \text { then } \\
& \quad T E M P[k]:=X[i] ; i:=i+1 \\
& \quad \text { else } T E M P[k]:=X[j] ; j:=j+1 ; \\
& \text { if } j>\text { Right then } \\
& \text { for } t:=0 \text { to } M i d d l e-1-i \text { do } \\
& \quad X[\text { Right }-t]:=X[\text { Middle }-1-t] \\
& \text { for } t:=0 \text { to } k-1 \text { do } \\
& X[\text { Left }+t]:=T E M P[1+t]
\end{aligned}
$$

end

Time complexity: $O(n \log n)$.

Merge Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
(2)	(6)	8	5	10	9	12	1	15	7	3	13	4	11	16	14
2	6	(5)	(8)	10	9	12	1	15	7	3	13	4	11	16	14
(2)	(5)	(6)	(8)	10	9	12	1	15	7	3	13	4	11	16	14
2	5	6	8	(9)	(10)	12	1	15	7	3	13	4	11	16	14
2	5	6	8	9	10	(1)	(12)	15	7	3	13	4	11	16	14
2	5	6	8	(1)	(9)	(10)	(12)	15	7	3	13	4	11	16	14
(1)	(2)	(5)	(6)	(8)	(9)	(10)	(12)	15	7	3	13	4	11	16	14
1	2	5	6	8	9	10	12	(7)	(15)	3	13	4	11	16	14
1	2	5	6	8	9	10	12	7	15	(3)	(13)	4	11	16	14
1	2	5	6	8	9	10	12	(3)	(7)	(13)	(15)	4	11	16	14
1	2	5	6	8	9	10	12	3	7	13	15	(4)	(11)	16	14
1	2	5	6	8	9	10	12	3	7	13	15	4	11	(14)	(16)
1	2	5	6	8	9	10	12	3	7	13	15	(4)	(11)	(14)	(16)
1	2	5	6	8	9	10	12	(3)	(4)	(7)	(11)	(13)	(14)	(15)	(16)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)

Figure: An example of mergesort.
Source: redrawn from [Manber 1989, Figure 6.8].

3.4 Quick Sort

Quick Sort

Algorithm Quicksort (X, n);
begin
$Q _\operatorname{Sort}(1, n)$
end
procedure Q_Sort (Left, Right);
begin
if Left $<$ Right then

```
    Partition(X,Left,Right);
    Q_Sort(Left,Middle - 1);
    Q_Sort(Middle + 1, Right)
end
```

Time complexity: $O\left(n^{2}\right)$, but $O(n \log n)$ in average

Quick Sort (cont.)

```
Algorithm Partition(X, Left, Right);
begin
    pivot := X[Left];
    L:= Left; R := Right;
    while}L<R\mathrm{ do
        while }X[L]\leq\mathrm{ pivot and L}\leq\mathrm{ Right do L:= L+1;
        while }X[R]>\mathrm{ pivot and }R\geq\mathrm{ Left do R:= R-1;
        if L<R then swap(X[L],X[R]);
```

 Middle \(:=R\);
 \(\operatorname{swap}(X[\) Left \(], X[\) Middle \(])\)
 end

Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
6	2	4	5	10	9	12	1	15	7	3	13	8	11	16	14
6	2	4	5	3	9	12	1	15	7	10	13	8	11	16	14
6	2	4	5	3	(1)	12	9	15	7	10	13	8	11	16	14
(1)	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14

Figure: Partition of an array around the pivot 6.
Source: redrawn from [Manber 1989, Figure 6.10].

Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
(1)	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1$)$	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
(1)	2	3	4	5	6	12	9	15	7	10	13	8	11	16	14
(1)	(2)	3	4	5	6	8	9	11	7	10	12	13	15	16	14
(1)	(2)	3	4	5	6	7	8	11	9	10	12	13	15	16	14
(1)	(2)	3	4	5	6	7	8	10	9	11	12	13	15	16	14
(1)	(2)	3	4	5	6	7	8	9	10	11	12	13	15	16	14
(1)	(2)	3	4	5	6	7	8	9	10	11	12	13	15	16	14
(1)	(2)	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Figure: An example of quicksort.
Source: redrawn from [Manber 1989, Figure 6.12].

Average-Case Complexity of Quick Sort

- When $X[i]$ is selected (at random) as the pivot,

$$
T(n)=n-1+T(i-1)+T(n-i), \text { where } n \geq 2
$$

The average running time will then be

$$
\begin{aligned}
T(n) & =n-1+\frac{1}{n} \sum_{i=1}^{n}(T(i-1)+T(n-i)) \\
& =n-1+\frac{1}{n} \sum_{i=1}^{n} T(i-1)+\frac{1}{n} \sum_{i=1}^{n} T(n-i) \\
& =n-1+\frac{1}{n} \sum_{j=0}^{n-1} T(j)+\frac{1}{n} \sum_{j=0}^{n-1} T(j) \\
& =n-1+\frac{2}{n} \sum_{i=0}^{n-1} T(i)
\end{aligned}
$$

- Solving this recurrence relation with full history, $T(n)=O(n \log n)$.

3.5 Heap Sort

Heap Sort

```
Algorithm Heapsort ( }A,n)\mathrm{ ;
begin
    Build_Heap(A);
    for }i:=n\mathrm{ downto 2 do
        swap(A[1],A[i]);
        Rearrange_Heap(i-1)
end
Time complexity: \(O(n \log n)\)
```


Heap Sort (cont.)

```
procedure Rearrange_Heap \((k)\);
begin
parent \(:=1\);
child \(:=2\);
while child \(\leq k-1\) do
if \(A[\) child \(]<A[\) child +1\(]\) then child \(:=\) child +1 ;
if \(A[\) child \(]>A[\) parent \(]\) then \(\operatorname{swap}(A[\) parent \(], A[\) child \(])\);
parent \(:=\) child;
child \(:=2 *\) child
else child \(:=k\)
end
```

Heap Sort (cont.)

Figure: Top down and bottom up heap construction.
Source: redrawn from [Manber 1989, Figure 6.14].
How do the two approaches compare?
/* Top down: $O(n \log n)$.
Bottom up: O (sum of the heights of all nodes) $=O(n)$. Consider a full binary tree of height h. From an excercise problem in HW \#2, we know that "sum of the heights of all nodes" of the tree equals $2^{h+1}-(h+2) \leq$ $2^{h+1}-1=n .{ }^{*} /$

Building a Heap Bottom Up

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
6	2	8	5	10	9	12	(14)	15	7	3	13	4	11	16	(1)
6	2	8	5	10	9	(16)	14	15	7	3	13	4	11	(12)	1
6	2	8	5	10	(13)	16	14	15	7	3	(9)	4	11	12	1
6	2	8	5	10	13	16	14	15	7	3	9	4	11	12	1
6	2	8	(15)	10	13	16	14	(5)	7	3	9	4	11	12	1
6	2	(16)	15	10	13	(12)	14	5	7	3	9	4	11	(8)	1
6	(15)	16	(14)	10	13	12	(2)	5	7	3	9	4	11	8	1
(16)	15	(13)	14	10	(9)	12	2	5	7	3	(6)	4	11	8	1

Figure: An example of building a heap bottom up.
Source: adapted from [Manber 1989, Figure 6.15].

A Lower Bound for Sorting

- A lower bound for a particular problem is a proof that no algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
- Decision trees model computations performed by comparison-based algorithms.

Theorem 6 (Theorem 6.1). Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.
Proof idea: there must be at least n ! leaves in the decision tree, one for each possible outcome.
/* Recall Stirling's approximation: $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}(1+O(1 / n))$. The height of the decision tree must be at least $\log (n!)$, i.e., $\Omega(n \log n) .{ }^{*} /$

Is the lower bound contradictory to the time complexity of radix sort?

A Lower Bound for Sorting (cont.)

A decision tree (partly shown) for the merge sort with $X_{1} X_{2} X_{3} X_{4}$ as input:

Note: in total, there should be $4!=24$ leaves, only six of which are shown.

4 Order Statistics

Order Statistics: Minimum and Maximum

Problem 7. Find the maximum and minimum elements in a given sequence.

- The obvious solution requires $(n-1)+(n-2)(=2 n-3)$ comparisons between elements.
- Can we do better? (Which comparisons could have been avoided?)
/* A better algorithm: compare x_{1} and x_{2}. Set min to be the smaller of the two and max the larger. Compare x_{3} and x_{4} and then compare the smaller with min and the larger with max; these take three comparisons. Update min and max accordingly. Continue until we have exhausted the sequence of numbers. Assuming n is even, the total number of comparisons $=1+3 \times \frac{(n-2)}{2}=\frac{3}{2} n-2$. $/$ /

Order Statistics: K th-Smallest

Problem 8. Given a sequence $S=x_{1}, x_{2}, \cdots, x_{n}$ of elements, and an integer k such that $1 \leq k \leq n$, find the k th-smallest element in S.

Order Statistics: Kth-Smallest (cont.)
procedure Select (Left, Right, k);
begin
if Left $=$ Right then
Select $:=$ Left
else Partition(X, Left, Right);
let Middle be the output of Partition;
if Middle -Left $+1 \geq k$ then
Select(Left, Middle, k)
else
Select $($ Middle +1, Right,$k-($ Middle - Left +1$))$
end

```
Algorithm Selection(X,n,k);
begin
    if (k<1) or ( }k>n\mathrm{ ) then print "error"
    else S:= Select (1,n,k)
end
```

$/^{*}$ Here the formal parameter k (for rank) is made to be relative to the left bound of array indices, while Left, Middle, and Right are absolute index values. */

Order Statistics: Kth-Smallest (cont.)

The nested "if" statement may be simplified:

```
procedure Select (Left, Right, \(k\) );
begin
    if Left \(=\) Right then
        Select \(:=\) Left
    else \(\operatorname{Partition}(X, L e f t\), Right);
        let Middle be the output of Partition;
        if Middle \(\geq k\) then
            Select (Left, Middle, \(k\) )
        else
            Select(Middle +1, Right,\(k\) )
end
```


5 Finding a Majority

Finding a Majority

Problem 9. Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a majority in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.
Caution: maintaining a counter for each possible number requires $O(\log n)$ time for each access to a particular counter, which means $O(n \log n)$ time in total. Sorting the sequence to find a probable candidate also requires $O(n \log n)$ time.

Idea: compare any two numbers in the sequence. What can we conclude if they are not equal?
/* If there is a majority, it is also a majority of the other $n-2$ numbers. However, the reverse may not be true. */

What if they are equal?
/* Keep the first number as a candidate at hand and repeat the following:
If the next number equals the candidate, we increment the count of its occurrences; otherwise, we have a pair of unequal numbers to eliminate (by decrementing the count for the candidate). When the count becomes 0 (due to elimination), we take the next number as a new candidate. */

Finding a Majority (cont.)

Algorithm Majority (X, n);

begin

$C:=X[1] ; \quad M:=1 ;$
for $i:=2$ to n do

```
if \(M=0\) then
        \(C:=X[i] ; \quad M:=1\)
    else
        if \(C=X[i]\) then \(M:=M+1\)
        else \(M:=M-1\);
```

Finding a Majority (cont.)
if $M=0$ then Majority $:=-1$
else
Count $:=0$;
for $i:=1$ to n do if $X[i]=C$ then Count $:=$ Count $+1 ;$ if Count $>n / 2$ then Majority $:=C$ else Majority $:=-1$
end

Time complexity: $O(n)$.

