Algorithms 2022: String Processing

(Based on [Manber 1989])

Yih-Kuen Tsay

October 18, 2022

1 Data Compression

Data Compression

Problem 1. Given a text (a sequence of characters), find an encoding for the characters that satisfies the prefix constraint and that minimizes the total number of bits needed to encode the text.

The prefix constraint states that the prefixes of an encoding of one character must not be equal to a complete encoding of another character.

Denote the characters by $c_{1}, c_{2}, \cdots, c_{n}$ and their frequencies by $f_{1}, f_{2}, \cdots, f_{n}$. Given an encoding E in which a bit string s_{i} represents c_{i}, the length (number of bits) of the text encoded by using E is $\sum_{i=1}^{n}\left|s_{i}\right| \cdot f_{i}$.

A Code Tree

Figure: The tree representation of encoding.
Source: redrawn from [Manber 1989, Figure 6.17].

A Huffman Tree

Figure: The Huffman tree for a text with frequencies of $\mathrm{A}: 5, \mathrm{~B}: 2, \mathrm{C}: 3, \mathrm{D}: 4, \mathrm{E}: 10, \mathrm{~F}: 1$. The code of B , for example, is 1001. The numbers labeling the internal nodes indicate the order in which the corresponding subtrees are formed.

Source: redrawn from [Manber 1989, Figure 6.19].
/* The basic idea of a Huffman tree is for the characters with lower frequencies to get longer codes so that the total number of bits is minimized. In the tree above, the two nodes for the two characters with the lowest frequencies, namely F and B , are the lowest leaves. Node 1 may be regarded as the node for an imaginary character combining F and B , with frequency $3(=1+2)$. If we remove the two leaves for F and B , then we get another Huffman tree with Node 1 as a new leaf. In the new tree, the two nodes for the two characters with the lowest frequencies, now C and the imaginary character represented by Node 1, are among the lowest leaves. This generalizes to subtrees obtained by removing two sibling leaves at a time.

Did you see how induction works here? The whole tree is a code tree for n characters, which can be seen as obtained from a code tree for $n-1$ characters, one of which is a combination of the two characters with the lowest frequencies in the original tree (the other $n-2$ characters being the same). */

Huffman Encoding

```
Algorithm Huffman_Encoding (S,f);
    insert all characters into a heap H
        according to their frequencies;
    while H not empty do
        if H}\mathrm{ contains only one character }X\mathrm{ then
        make }X\mathrm{ the root of T
        else
            delete X and Y with lowest frequencies;
                from H;
            create Z with a frequency equal to the
                sum of the frequencies of X and Y;
            insert Z into H;
            make }X\mathrm{ and }Y\mathrm{ children of }Z\mathrm{ in }
```

What is its time complexity? $O(n \log n)$
/* The while loop requires n iterations, as the heap H initially contains n elements and each iteration reduces its size by one (removing two elements and adding one new element). Each iteration takes $O(\log n)$ time. */

2 String Matching

String Matching

Problem 2. Given two strings $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the first occurrence (if any) of B in A. In other words, find the smallest k such that, for all $i, 1 \leq i \leq m$, we have $a_{k-1+i}=b_{i}$.

A (non-empty) substring of a string A is a consecutive sequence of characters $a_{i} a_{i+1} \cdots a_{j}(i \leq j)$ from A.

Straightforward String Matching

$$
A=x y x x y x y x y y x y x x y y x y x y x x . \quad B=x y x y y x y x y x .
$$

```
\(\begin{array}{lllllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\ x & y & x & x & y & x & y & x & y & y & x & y & x & y & x & y & y & x & y & x & y & x & x\end{array}\)
\(\begin{array}{lllll}x & y & x & y & \\ & x & \cdot & \cdot & \end{array}\).
    \(\begin{array}{lll}x & y & . \\ & x & y\end{array}\)
    \(\begin{array}{lllll}y & x & y & y & \cdot\end{array}\)
            \(\begin{array}{lllllllllll}x & y & x & y & y & x & y & x & y & x & x \\ & x & \cdot & \cdot & . & & & & & & \end{array}\)
            \(x\) ••
            \(x\)
\(\cdot\)
\(x\)
                \(\begin{array}{lllllll}x & y & x & y & y & \cdot & \cdot\end{array}\)
                    \(\begin{array}{lllllllllll}x & y & x & y & y & x & y & x & y & x & x\end{array}\)
```

Figure: An example of a straightforward string matching.
Source: redrawn from [Manber 1989, Figure 6.20].

Straightforward String Matching (cont.)

- What is the time complexity?
- $B\left(=b_{1} b_{2} \cdots b_{m}\right)$ may be compared against
* $a_{1} a_{2} \cdots a_{m}$,
* $a_{2} a_{3} \cdots a_{m+1}$,
* ..., and
* $a_{n-m+1} a_{n-m+2} \cdots a_{n}$
- For example, $A=x x x x \ldots x x x y$ and $B=x x x y$.
- So, the time complexity is $O(m \times n)$.
- But the best possible is linear-time, with a preprocessing.
- The cause of deficiency: tries from 7 to 12 in the example are doomed to fail. Why?
- How can we avoid the futile tries?

Matching the Pattern Against Itself

- In the example, when the ongoing matching fails at b_{11} against a_{16}, we know that $b_{1} b_{2} \ldots b_{10}$ equals $a_{6} a_{7} \ldots a_{15}$.
- The next possible substring of A that equals B must start at a_{13}, because $a_{13} a_{14} a_{15}$ is the longest suffix of $a_{6} a_{7} \ldots a_{15}$ that equals a prefix of $b_{1} b_{2} \ldots b_{10}$, namely $b_{1} b_{2} b_{3}$.
$/^{*}$ The reason can be restated as: $b_{1} b_{2} b_{3}$ is the longest proper prefix that is also a suffix of $a_{6} a_{7} \ldots a_{15}$ (which equals $b_{1} b_{2} \ldots b_{10}$). If we know this in advance, then we should next try b_{4} against a_{16} (rather than b_{1} against a_{7}). */
- We can tell this by just looking at B, as $a_{13} a_{14} a_{15}$ equals $b_{8} b_{9} b_{10}$.

$$
\begin{array}{lllllllllll}
B= & x & y & x & y & y & x & y & x & y & x \\
& x & \cdot & \cdot & \cdot & & & & & & \\
& & x & y & x & \cdot & \cdot & \cdot & & & \\
& & & x & \cdot & \cdot & \cdot & & & & \\
& & & & x & \cdot & \cdot & \cdot & & & \\
& & & & & x & y & x & y & y & \\
& & & & & & x & \cdot & \cdot & \cdot & \\
& & & & & & & x & y & x &
\end{array}
$$

Figure: Matching the pattern against itself.
Source: redrawn from [Manber 1989, Figure 6.21].

The Values of next

$i=$	1	2	3	4	5	6	7	8	9	10	11
$B=$	x	y	x	y	y	x	y	x	y	x	x
next $=$	-1	0	0	1	2	0	1	2	3	4	3

Figure: The values of next.
Source: redrawn from [Manber 1989, Figure 6.22].
The value of next $[j]$ tells the length of the longest proper prefix that is equal to a suffix of $b_{1} b_{2} \ldots b_{j-1}$.
If the ongoing matching fails at b_{j} against a_{i}, then $b_{n e x t[j]+1}$ is the next to try against a_{i}.
$/^{*}$ This is safe (without missing an earlier matching substring of A), as $b_{1} b_{2} \ldots b_{n e x t[j]}$ is the longest proper prefix of $b_{1} b_{2} \ldots b_{j-1}$ that equals a suffix of $b_{1} b_{2} \ldots b_{j-1}$, namely $b_{j-n e x t[j]} b_{j-n e x t[j]+1} \ldots b_{j-1}$, which equals $a_{i-n e x t[j]} a_{i-n e x t[j]+1} \ldots a_{i-1} . * /$

Note: $n e x t[1]$ is set to -1 so that this unique case is easily differentiated (see the main loop of the KMP algorithm).

The KMP Algorithm

```
Algorithm String_Match \((A, n, B, m)\);
begin
    \(j:=1 ; \quad i:=1 ;\)
    Start \(:=0\);
    while Start \(=0\) and \(i \leq n\) do
        if \(B[j]=A[i]\) then
            \(j:=j+1 ; \quad i:=i+1\)
        else
            \(j:=\operatorname{next}[j]+1 ;\)
            if \(j=0\) then
                \(j:=1 ; \quad i:=i+1 ;\)
        if \(j=m+1\) then Start \(:=i-m\)
end
```


The KMP Algorithm (cont.)

Figure: Computing next $[i]$.
Source: redrawn from [Manber 1989, Figure 6.24].
/* Having proceeded inductively, we now know next $[i-1]$, which tells the length of the longest proper prefix that equals the longest suffix of $b_{1} b_{2} \ldots b_{i-2}$. So, hoping to extend the length by 1 for $B[i]$, we compare $B[j(=n e x t[i-1]+1)]$ against $B[i-1]$. If $B[j]=B[i-1]$, then next $[i]$ is simply next $[i-1]+1$, which is the best we can get. Otherwise (i.e., $B[j] \neq B[i-1]$), this is analogous to the case of $B[j] \neq A[i]$ when searching for B in A, and we should then compare $B[n e x t[j]+1]$ against $B[i-1]$. If $B[n e x t[j]+1]=B[i-1]$, then $n e x t[i]$ is next $[j]+1$. Otherwise, we repeat until we either have a match against $B[i-1]$ or exhausted all possible proper prefixes. */

The KMP Algorithm (cont.)

```
Algorithm Compute_Next \((B, m)\);
begin
    \(n e x t[1]:=-1 ; \quad n e x t[2]:=0 ;\)
    for \(i:=3\) to \(m\) do
        \(j:=n \operatorname{ext}[i-1]+1 ;\)
        while \(B[i-1] \neq B[j]\) and \(j>0\) do
            \(j:=\operatorname{next}[j]+1 ;\)
        \(n \operatorname{ext}[i]:=j\)
end
```


The KMP Algorithm (cont.)

- What is its time complexity?
- Because of backtracking, a_{i} may be compared against

$$
\begin{aligned}
& * b_{j}, \\
& * b_{j-1}, \\
& * \ldots, \text { and } \\
& * b_{2}
\end{aligned}
$$

- However, for these to happen, each of $a_{i-j+2}, a_{i-j+3}, \ldots, a_{i-1}$ was compared against the corresponding character in $b_{1} b_{2} \ldots b_{j-1}$ just once.
- We may re-assign the costs of comparing a_{i} against $b_{j-1}, b_{j-2}, \ldots, b_{2}$ to those of comparing $a_{i-j+2} a_{i-j+3} \ldots a_{i-1}$ against $b_{1} b_{2} \ldots b_{j-1}$.
- Every a_{i} is incurred the cost of at most two comparisons.
- So, the time complexity is $O(n)$.

3 String Editing

String Editing

Problem 3. Given two strings $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the minimum number of changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

String Editing (cont.)

Let $C(i, j)$ denote the minimum cost of changing $A(i)$ to $B(j)$, where $A(i)=a_{1} a_{2} \cdots a_{i}$ and $B(j)=$ $b_{1} b_{2} \cdots b_{j}$.

For $i=0$ or $j=0$,

$$
\begin{aligned}
& C(i, 0)=i \\
& C(0, j)=j
\end{aligned}
$$

$/^{*} C(i, 0)$ is the cost of editing a string of length i into the empty string by deleting i characters, while $C(0, j)$ is the cost of editing the empty string into a string of length j by inserting j characters. */

For $i>0$ and $j>0$,

$$
C(i, j)=\min \begin{cases}C(i-1, j)+1 & \left(\text { deleting } a_{i}\right) \\ C(i, j-1)+1 & \left(\text { inserting } b_{j}\right) \\ C(i-1, j-1)+1 & \left(a_{i} \rightarrow b_{j}\right) \\ C(i-1, j-1) & \left(a_{i}=b_{j}\right)\end{cases}
$$

String Editing (cont.)

Figure: The dependencies of $C(i, j)$.
Source: redrawn from [Manber 1989, Figure 6.26]

String Editing (cont.)

```
Algorithm Minimum_Edit_Distance \((A, n, B, m)\);
    for \(i:=0\) to \(n\) do \(C[i, 0]:=i\);
    for \(j:=1\) to \(m\) do \(C[0, j]:=j\);
    for \(i:=1\) to \(n\) do
        for \(j:=1\) to \(m\) do
            \(x:=C[i-1, j]+1 ;\)
            \(y:=C[i, j-1]+1\);
            if \(a_{i}=b_{j}\) then
                \(z:=C[i-1, j-1]\)
            else
            \(z:=C[i-1, j-1]+1 ;\)
        \(C[i, j]:=\min (x, y, z)\)
```

Its time complexity is clearly $O(m n)$.

