

Searching and Sorting

(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Searching a Sorted Sequence

Problem

Let x_1, x_2, \dots, x_n be a sequence of real numbers such that $x_1 \le x_2 \le \dots \le x_n$. Given a real number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that $x_i = z$.

Searching a Sorted Sequence

Problem

Let x_1, x_2, \dots, x_n be a sequence of real numbers such that $x_1 \le x_2 \le \dots \le x_n$. Given a real number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that $x_i = z$.

Idea: cut the search space in half by asking only one question.

$$\begin{cases} T(1) = O(1) \\ T(n) = T(\frac{n}{2}) + O(1), n \ge 2 \end{cases}$$

Time complexity: $O(\log n)$ (applying the master theorem with a=1, b=2, k=0, and $b^k=1=a$).

Binary Search


```
function Find (z, Left, Right): integer;
begin
    if Left = Right then
      if X[Left] = z then Find := Left
      else Find := 0
    else
       Middle := \lceil \frac{Left + Right}{2} \rceil;
      if z < X[Middle] then
         Find := Find(z, Left, Middle - 1)
      else
         Find := Find(z, Middle, Right)
end
Algorithm Binary_Search (X, n, z);
begin
    Position := Find(z, 1, n);
```

Binary Search: Alternative


```
function Find (z, Left, Right): integer;
begin
    if Left > Right then
       Find := 0
    else
       Middle := \lceil \frac{Left + Right}{2} \rceil;
       if z = X[Middle] then
         Find := Middle
       else if z < X[Middle] then
         Find := Find(z, Left, Middle - 1)
       else
         Find := Find(z, Middle + 1, Right)
```

end

How do the two algorithms compare?

Searching a Cyclically Sorted Sequence

Problem

Given a cyclically sorted list, find the position of the minimal element in the list (we assume, for simplicity, that this position is unique).

- 🚱 Example 1:
 - 1 2 3 4 5 6 7 8 [5 6 7 0 1 2 3 4]
 - The 4th is the minimal element.
- Example 2:
 - 1 2 3 4 5 6 7 8
 [0 1 2 3 4 5 6 7]
 - 🌻 The 1st is the minimal element.

Searching a Cyclically Sorted Sequence

Problem

Given a cyclically sorted list, find the position of the minimal element in the list (we assume, for simplicity, that this position is unique).

- Example 1:
 - 1 2 3 4 5 6 7 8 [5 6 7 0 1 2 3 4]
 - 🌞 The 4th is the minimal element.
- Example 2:
 - 1 2 3 4 5 6 7 8
 [0 1 2 3 4 5 6 7]
 - 🌻 The 1st is the minimal element.
- To cut the search space in half, what question should we ask?

Cyclic Binary Search


```
Algorithm Cyclic_Binary_Search (X, n);
begin
    Position := Cyclic\_Find(1, n);
end
function Cyclic_Find (Left, Right): integer;
begin
    if Left = Right then Cyclic_Find := Left
    else
        Middle := \left| \frac{Left + Right}{2} \right|;
        if X[Middle] < X[Right] then
           Cyclic\_Find := Cyclic\_Find(Left, Middle)
        else
           Cyclic\_Find := Cyclic\_Find(Middle + 1, Right)
```

end

"Fixpoints"

Problem

Given a sorted sequence of distinct integers a_1, a_2, \dots, a_n , determine whether there exists an index i such that $a_i = i$.

- Example 1:
 - 1 2 3 4 5 6 7 8
 [-1 1 2 4 5 6 8 9]
- Example 2:
 - 1 2 3 4 5 6 7 8
 [-1 1 2 5 6 8 9 10]
 - \mathfrak{S} There is no i such that $a_i = i$.

"Fixpoints"

Problem

Given a sorted sequence of distinct integers a_1, a_2, \dots, a_n , determine whether there exists an index i such that $a_i = i$.

- Example 1:
 - 1 2 3 4 5 6 7 8
 [-1 1 2 4 5 6 8 9]
 - $\stackrel{\clubsuit}{=} a_4 = 4$ (there are more ...).
- Example 2:
 - 1 2 3 4 5 6 7 8
 [-1 1 2 5 6 8 9 10]
 - % There is no i such that $a_i = i$.
- Again, can we cut the search space in half by asking only one question?

A Special Binary Search


```
function Special_Find (Left, Right): integer;
begin
    if Left = Right then
      if A[Left] = Left then Special\_Find := Left
      else Special_Find := 0
    else
        Middle := |\frac{Left + Right}{2}|;
        if A[Middle] < Middle then
           Special\_Find := Special\_Find(Middle + 1, Right)
        else
           Special\_Find := Special\_Find(Left, Middle)
end
```

A Special Binary Search (cont.)

Algorithm Special_Binary_Search (A, n); begin

 $Position := Special_Find(1, n);$ end

Stuttering Subsequence

Problem

Given two sequences $A (= a_1 a_2 \cdots a_n)$ and $B (= b_1 b_2 \cdots b_m)$, find the maximal value of i such that B^i is a subsequence of A.

- If B = xyzzx, then $B^2 = xxyyzzzzxx$, $B^3 = xxxyyyzzzzzxxx$, etc.
- B is a subsequence of A if we can embed B inside A in the same order but with possible holes.
- For example, $B^2 = xxyyzzzzxx$ is a subsequence of xxzzyyyxxzzzzxxx.

Stuttering Subsequence

Problem

Given two sequences $A (= a_1 a_2 \cdots a_n)$ and $B (= b_1 b_2 \cdots b_m)$, find the maximal value of i such that B^i is a subsequence of A.

- If B = xyzzx, then $B^2 = xxyyzzzzxx$, $B^3 = xxxyyyzzzzzxxx$, etc.
- B is a subsequence of A if we can embed B inside A in the same order but with possible holes.
- For example, $B^2 = xxyyzzzzxx$ is a subsequence of xxzzyyyxxzzzzzxxx.
- If B^j is a subsequence of A, then B^i is a subsequence of A, for $1 \le i \le j$.

Stuttering Subsequence

Problem

Given two sequences $A (= a_1 a_2 \cdots a_n)$ and $B (= b_1 b_2 \cdots b_m)$, find the maximal value of i such that B^i is a subsequence of A.

- If B = xyzzx, then $B^2 = xxyyzzzzxx$, $B^3 = xxxyyyzzzzzxxx$, etc.
- B is a subsequence of A if we can embed B inside A in the same order but with possible holes.
- For example, $B^2 = xxyyzzzzxx$ is a subsequence of xxzzyyyyxxzzzzxxx.
- If B^j is a subsequence of A, then B^i is a subsequence of A, for $1 \le i \le j$.
- The maximum value of *i* cannot exceed $\lfloor \frac{n}{m} \rfloor$ (or B^i would be longer than A).

Two ways to find the maximum i:

Sequential search: try 1, 2, 3, etc. sequentially.

Two ways to find the maximum i:

- Sequential search: try 1, 2, 3, etc. sequentially. Time complexity: O(nj), where j is the maximum value of i.
- \odot Binary search between 1 and $\lfloor \frac{n}{m} \rfloor$.

Two ways to find the maximum i:

- Sequential search: try 1, 2, 3, etc. sequentially. Time complexity: O(nj), where j is the maximum value of i.
- Binary search between 1 and $\lfloor \frac{n}{m} \rfloor$. Time complexity: $O(n \log \frac{n}{m})$.

Two ways to find the maximum i:

- Sequential search: try 1, 2, 3, etc. sequentially. Time complexity: O(nj), where j is the maximum value of i.
- Sinary search between 1 and $\lfloor \frac{n}{m} \rfloor$. Time complexity: $O(n \log \frac{n}{m})$.

Can binary search be applied, if the bound $\lfloor \frac{n}{m} \rfloor$ is unknown?

Two ways to find the maximum i:

- Sequential search: try 1, 2, 3, etc. sequentially. Time complexity: O(nj), where j is the maximum value of i.
- Sinary search between 1 and $\lfloor \frac{n}{m} \rfloor$. Time complexity: $O(n \log \frac{n}{m})$.

Can binary search be applied, if the bound $\lfloor \frac{n}{m} \rfloor$ is unknown?

Think of the base case in a reversed induction.

Interpolation Search

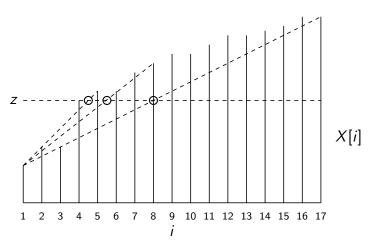
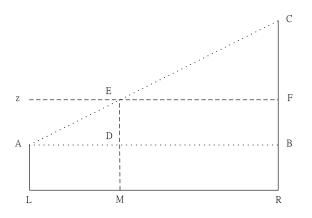


Figure: Interpolation search.

Source: redrawn from [Manber 1989, Figure 6.4].

Interpolation Search (cont.)



$$\frac{\overline{LM}}{\overline{LR}} = \frac{\overline{\overline{AD}}}{\overline{\overline{AB}}} = \frac{\overline{\overline{AE}}}{\overline{\overline{AC}}} = \frac{\overline{\overline{BF}}}{\overline{\overline{BC}}}, \text{so } |\overline{\overline{LM}}| = \frac{|\overline{\overline{BF}}|}{|\overline{\overline{BC}}|} \times |\overline{\overline{LR}}|$$

Interpolation Search (cont.)


```
function Int_Find (z, Left, Right) : integer;
begin
    if X[Left] = z then Int\_Find := Left
    else if Left = Right or X[Left] = X[Right] then
          Int Find := 0
    else
          Next\_Guess := \left\lceil Left + \frac{(z-X[Left])(Right-Left)}{X[Right]-X[Left]} \right\rceil;
          if z < X[Next\_Guess] then
             Int\_Find := Int\_Find(z, Left, Next\_Guess - 1)
          else
             Int\_Find := Int\_Find(z, Next\_Guess, Right)
end
```

Interpolation Search (cont.)


```
Algorithm Interpolation_Search (X, n, z);
begin
if z < X[1] or z > X[n] then Position := 0
else Position := Int_Find(z, 1, n);
end
```

Sorting

Problem

Given n numbers x_1, x_2, \dots, x_n , arrange them in increasing order. In other words, find a sequence of distinct indices $1 \le i_1, i_2, \dots, i_n \le n$, such that $x_{i_1} \le x_{i_2} \le \dots \le x_{i_n}$.

A sorting algorithm is called **in-place** if no additional work space is used besides the initial array that holds the elements.

Using Balanced Search Trees

- Balanced search trees, such as AVL trees, may be used for sorting:
 - 1. Create an empty tree.
 - 2. Insert the numbers one by one to the tree.
 - 3. Traverse the tree and output the numbers.

Using Balanced Search Trees

- Balanced search trees, such as AVL trees, may be used for sorting:
 - 1. Create an empty tree.
 - 2. Insert the numbers one by one to the tree.
 - 3. Traverse the tree and output the numbers.
- What's the time complexity? Suppose we use an AVL tree.

Radix Sort


```
Algorithm Straight_Radix (X, n, k);
begin
    put all elements of X in a queue GQ;
    for i := 1 to d do
       initialize queue Q[i] to be empty
    for i := k downto 1 do
       while GQ is not empty do
              pop x from GQ;
              d := the i-th digit of x;
              insert x into Q[d];
       for t = 1 to d do
           insert Q[t] into GQ;
    for i := 1 to n do
       pop X[i] from GQ
end
```

Radix Sort


```
Algorithm Straight_Radix (X, n, k);
begin
    put all elements of X in a queue GQ;
    for i := 1 to d do
       initialize queue Q[i] to be empty
    for i := k downto 1 do
       while GQ is not empty do
              pop x from GQ;
              d := the i-th digit of x;
              insert x into Q[d];
       for t := 1 to d do
           insert Q[t] into GQ;
    for i := 1 to n do
       pop X[i] from GQ
```

Algorithms 2022

Merge Sort


```
Algorithm Mergesort (X, n);
begin M_{-}Sort(1, n) end
procedure M_Sort (Left, Right);
begin
    if Right - Left = 1 then
      if X[Left] > X[Right] then swap(X[Left], X[Right])
    else if Left \neq Right then
            Middle := \lceil \frac{1}{2} (Left + Right) \rceil;
            M_Sort(Left, Middle - 1);
            M_Sort(Middle, Right);
```

Merge Sort (cont.)


```
i := Left; i := Middle; k := 0;
while (i < Middle - 1) and (i < Right) do
      k := k + 1:
      if X[i] < X[j] then
        TEMP[k] := X[i]; i := i + 1
      else TEMP[k] := X[i]: i := i + 1:
if i > Right then
  for t := 0 to Middle - 1 - i do
     X[Right - t] := X[Middle - 1 - t]
for t := 0 to k - 1 do
   X[Left + t] := TEMP[1 + t]
```

end

Merge Sort (cont.)


```
i := Left; i := Middle; k := 0;
while (i < Middle - 1) and (i < Right) do
      k := k + 1:
      if X[i] < X[j] then
        TEMP[k] := X[i]; i := i + 1
      else TEMP[k] := X[i]: i := i + 1:
if i > Right then
  for t := 0 to Middle - 1 - i do
     X[Right - t] := X[Middle - 1 - t]
for t := 0 to k - 1 do
   X[Left + t] := TEMP[1 + t]
```

end

Time complexity: $O(n \log n)$.

Merge Sort (cont.)

			-		-										The same of
6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
2	6	8	5	10	9	12	1	15	7	3	13	4	11	16	14
2	6	(5)	8	10	9	12	1	15	7	3	13	4	11	16	14
2	5	6	(80)	10	9	12	1	15	7	3	13	4	11	16	14
2	5	6	8	9	10	12	1	15	7	3	13	4	11	16	14
2	5	6	8	9	10	1	12	15	7	3	13	4	11	16	14
2	5	6	8	1	9	10	12	15	7	3	13	4	11	16	14
1	2	(5)	6	8	9	10	12	15	7	3	13	4	11	16	14
1	2	5	6	8	9	10	12	7	15)	3	13	4	11	16	14
1	2	5	6	8	9	10	12	7	15	3	13)	4	11	16	14
1	2	5	6	8	9	10	12	3	7	13)	15)	4	11	16	14
1	2	5	6	8	9	10	12	3	7	13	15	4	(11)	16	14
1	2	5	6	8	9	10	12	3	7	13	15	4	11	14)	16)
1	2	5	6	8	9	10	12	3	7	13	15	4	11)	14)	16)
1	2	5	6	8	9	10	12	3	4	7	(11)	13)	14)	15)	16)
1	2	3	4	(5)	6	7	8	9	10	(11)	(12)	13)	14)	15)	16)

Figure: An example of mergesort.

Source: redrawn from [Manber 1989, Figure 6.8].

Quick Sort


```
Algorithm Quicksort (X, n);
begin
    Q_Sort(1, n)
end
procedure Q_Sort (Left, Right);
begin
   if Left < Right then
      Partition(X, Left, Right);
      Q_Sort(Left, Middle - 1);
      Q_Sort(Middle + 1, Right)
end
```

Quick Sort


```
Algorithm Quicksort (X, n);
begin
    Q_Sort(1, n)
end
procedure Q_Sort (Left, Right);
begin
   if Left < Right then
      Partition(X, Left, Right);
      Q_Sort(Left, Middle - 1);
      Q_Sort(Middle + 1, Right)
end
```

Time complexity: $O(n^2)$, but $O(n \log n)$ in average

Quick Sort (cont.)


```
Algorithm Partition(X, Left, Right);
begin
   pivot := X[Left];
   L := Left: R := Right:
   while I < R do
         while X[L] < pivot and L < Right do L := L + 1;
         while X[R] > pivot and R \ge Left do R := R - 1;
         if L < R then swap(X[L], X[R]);
    Middle := R:
   swap(X[Left], X[Middle])
end
```

Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
6	2	4	5	10	9	12	1	15	7	3	13	8	11	16	14
6	2	4	5	3	9	12	1	15	7	10	13	8	11	16	14
6	2	4	5	3	1	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14

Figure: Partition of an array around the pivot 6.

Source: redrawn from [Manber 1989, Figure 6.10].

Quick Sort (cont.)

	_	_	_	10	_	10	_	4.5		_	10			1.0	
6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	3	4	5	6	12	9	15	7	10	13	8	11	16	14
1	2	3	4	5	6	8	9	11	7	10	12)	13	15	16	14
1	2	3	4	5	6	7	8	11	9	10	12)	13	15	16	14
1	2	3	4	5	6	7	8	10	9	(11)	12)	13	15	16	14
1	2	3	4	5	6	7	8	9	10	(11)	12	13	15	16	14
1	(2)	3	4	5	6	7	8	9	10	(11)	12	13)	15	16	14
1	2	3	4	5	6	7	8	9	10	(11)	12	13)	14	15)	16

Figure: An example of quicksort.

Source: redrawn from [Manber 1989, Figure 6.12].

Average-Case Complexity of Quick Sort

 \bullet When X[i] is selected (at random) as the pivot,

$$T(n) = n - 1 + T(i - 1) + T(n - i)$$
, where $n \ge 2$.

Average-Case Complexity of Quick Sort

When X[i] is selected (at random) as the pivot,

$$T(n) = n - 1 + T(i - 1) + T(n - i)$$
, where $n \ge 2$.

The average running time will then be

$$T(n) = n - 1 + \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i))$$

$$= n - 1 + \frac{1}{n} \sum_{i=1}^{n} T(i-1) + \frac{1}{n} \sum_{i=1}^{n} T(n-i)$$

$$= n - 1 + \frac{1}{n} \sum_{j=0}^{n-1} T(j) + \frac{1}{n} \sum_{j=0}^{n-1} T(j)$$

$$= n - 1 + \frac{2}{n} \sum_{i=0}^{n-1} T(i)$$

Solving this recurrence relation with full history, $T(n) = O(n \log n)$.

Heap Sort


```
Algorithm Heapsort (A, n);
begin

Build\_Heap(A);

for i := n downto 2 do

swap(A[1], A[i]);

Rearrange\_Heap(i-1)
end
```

Heap Sort


```
Algorithm Heapsort (A, n);
begin

Build\_Heap(A);

for i := n downto 2 do

swap(A[1], A[i]);

Rearrange\_Heap(i-1)
end
```

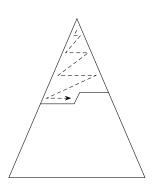
Time complexity: $O(n \log n)$

Heap Sort (cont.)


```
procedure Rearrange_Heap (k);
begin
    parent := 1;
   child := 2;
   while child \leq k-1 do
          if A[child] < A[child + 1] then
             child := child + 1:
          if A[child] > A[parent] then
            swap(A[parent], A[child]);
             parent := child;
             child := 2 * child
          else child := k
```

end

Heap Sort (cont.)



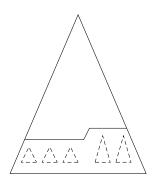
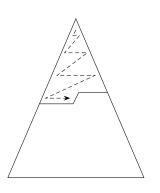


Figure: Top down and bottom up heap construction.

Source: redrawn from [Manber 1989, Figure 6.14].

Heap Sort (cont.)



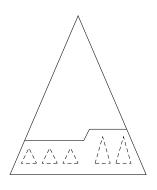


Figure: Top down and bottom up heap construction.

Source: redrawn from [Manber 1989, Figure 6.14].

How do the two approaches compare?

Building a Heap Bottom Up

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
6	2	8	5	10	9	12	14)	15	7	3	13	4	11	16	1
6	2	8	5	10	9	16)	14	15	7	3	13	4	11	(12)	1
6	2	8	5	10	13)	16	14	15	7	3	9	4	11	12	1
6	2	8	5	10	13	16	14	15	7	3	9	4	11	12	1
6	2	8	15)	10	13	16	14	(5)	7	3	9	4	11	12	1
6	2	16)	15	10	13	(12)	14	5	7	3	9	4	11	8	1
6	15)	16	(14)	10	13	12	2	5	7	3	9	4	11	8	1
16)	15	13)	14	10	9	12	2	5	7	3	6	4	11	8	1

Figure: An example of building a heap bottom up.

Source: adapted from [Manber 1989, Figure 6.15].

- A lower bound for a particular problem is a proof that *no* algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
- Decision trees model computations performed by comparison-based algorithms.

- A lower bound for a particular problem is a proof that *no* algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
- Decision trees model computations performed by comparison-based algorithms.

Theorem (Theorem 6.1)

Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.

- A lower bound for a particular problem is a proof that *no* algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
- Decision trees model computations performed by comparison-based algorithms.

Theorem (Theorem 6.1)

Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.

Proof idea: there must be at least n! leaves in the decision tree, one for each possible outcome.

- A lower bound for a particular problem is a proof that no algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
- Decision trees model computations performed by comparison-based algorithms.

Theorem (Theorem 6.1)

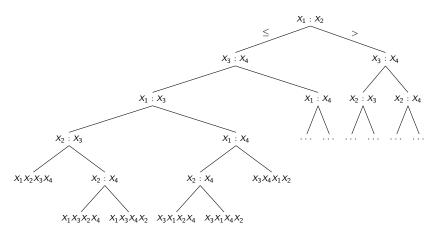
Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.

Proof idea: there must be at least n! leaves in the decision tree, one for each possible outcome.

Is the lower bound contradictory to the time complexity of radix sort?

A Lower Bound for Sorting (cont.)

A decision tree (partly shown) for the merge sort with $X_1X_2X_3X_4$ as input:



Note: in total, there should be 4! = 24 leaves, only six of which are shown.

Order Statistics: Minimum and Maximum

Problem

Find the maximum and minimum elements in a given sequence.

Order Statistics: Minimum and Maximum

Problem

Find the maximum and minimum elements in a given sequence.

The obvious solution requires (n-1) + (n-2) (= 2n-3) comparisons between elements.

Order Statistics: Minimum and Maximum

Problem

Find the maximum and minimum elements in a given sequence.

- The obvious solution requires (n-1) + (n-2) (= 2n-3) comparisons between elements.
- Can we do better? (Which comparisons could have been avoided?)

Order Statistics: Kth-Smallest

Problem

Given a sequence $S = x_1, x_2, \dots, x_n$ of elements, and an integer k such that $1 \le k \le n$, find the kth-smallest element in S.

Order Statistics: *K*th-**Smallest (cont.)**


```
procedure Select (Left, Right, k);
begin
    if Left = Right then
      Select := Left
    else Partition(X, Left, Right);
         let Middle be the output of Partition;
         if Middle - Left + 1 > k then
           Select(Left, Middle, k)
         else
           Select(Middle + 1, Right, k - (Middle - Left + 1))
```

end

```
Algorithm Selection (X, n, k);
begin
if (k < 1) or (k > n) then print "error"
else S := Select(1, n, k)
```

Order Statistics: Kth-Smallest (cont.)

The nested "if" statement may be simplified:

```
procedure Select (Left, Right, k);
begin
    if Left = Right then
      Select := I eft
    else Partition(X, Left, Right);
         let Middle be the output of Partition;
         if Middle > k then
           Select(Left, Middle, k)
         else
           Select(Middle + 1, Right, k)
end
```


Problem

Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a *majority* in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.

Problem

Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a *majority* in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.

Caution: maintaining a counter for each possible number requires $O(\log n)$ time for each access to a particular counter, which means $O(n \log n)$ time in total. Sorting the sequence to find a probable candidate also requires $O(n \log n)$ time.

Problem

Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a *majority* in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.

Caution: maintaining a counter for each possible number requires $O(\log n)$ time for each access to a particular counter, which means $O(n \log n)$ time in total. Sorting the sequence to find a probable candidate also requires $O(n \log n)$ time.

Idea: compare any two numbers in the sequence. What can we conclude if they are not equal?

Problem

Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a *majority* in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.

Caution: maintaining a counter for each possible number requires $O(\log n)$ time for each access to a particular counter, which means $O(n \log n)$ time in total. Sorting the sequence to find a probable candidate also requires $O(n \log n)$ time.

Idea: compare any two numbers in the sequence. What can we conclude if they are not equal?

What if they are equal?

Finding a Majority (cont.)


```
Algorithm Majority (X, n);
begin

C := X[1]; \quad M := 1;
for i := 2 to n do

if M = 0 then

C := X[i]; \quad M := 1

else

if C = X[i] then M := M + 1

else M := M - 1:
```

Finding a Majority (cont.)


```
if M=0 then Majority:=-1
else
	Count:=0;
	for i:=1 to n do
		if X[i]=C then Count:=Count+1;
	if Count>n/2 then Majority:=C
	else Majority:=-1
```

Finding a Majority (cont.)


```
if M=0 then Majority:=-1
else
	Count:=0;
	for i:=1 to n do
		if X[i]=C then Count:=Count+1;
	if Count>n/2 then Majority:=C
	else Majority:=-1
```

Time complexity: O(n).