String Processing (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Data Compression

Problem

Given a text (a sequence of characters), find an encoding for the characters that satisfies the prefix constraint and that minimizes the total number of bits needed to encode the text.

The prefix constraint states that the prefixes of an encoding of one character must not be equal to a complete encoding of another character.

Denote the characters by $c_{1}, c_{2}, \cdots, c_{n}$ and their frequencies by f_{1}, f_{2}, \cdots, f_{n}. Given an encoding E in which a bit string s_{i} represents c_{i}, the length (number of bits) of the text encoded by using E is $\sum_{i=1}^{n}\left|s_{i}\right| \cdot f_{i}$.

A Code Tree

Figure: The tree representation of encoding. Source: redrawn from [Manber 1989, Figure 6.17].

A Huffman Tree

Figure: The Huffman tree for a text with frequencies of $A: 5, B: 2, C: 3, D: 4, E$: $10, F: 1$. The code of B, for example, is 1001 . The numbers labeling the internal nodes indicate the order in which the corresponding subtrees are formed.

Source: redrawn from [Manber 1989, Figure 6.19].

Huffman Encoding

Algorithm Huffman_Encoding (S, f);
insert all characters into a heap H
according to their frequencies;
while H not empty do
if H contains only one character X then
make X the root of T
else
delete X and Y with lowest frequencies; from H;
create Z with a frequency equal to the
sum of the frequencies of X and Y; insert Z into H;
make X and Y children of Z in T

Huffman Encoding

Algorithm Huffman_Encoding (S, f); insert all characters into a heap H according to their frequencies; while H not empty do
if H contains only one character X then make X the root of T
else
delete X and Y with lowest frequencies; from H;
create Z with a frequency equal to the sum of the frequencies of X and Y; insert Z into H;
make X and Y children of Z in T

What is its time complexity?

Huffman Encoding

Algorithm Huffman_Encoding (S, f); insert all characters into a heap H according to their frequencies; while H not empty do
if H contains only one character X then make X the root of T
else
delete X and Y with lowest frequencies; from H;
create Z with a frequency equal to the sum of the frequencies of X and Y; insert Z into H;
make X and Y children of Z in T

What is its time complexity? $O(n \log n)$

String Matching

Problem

Given two strings $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the first occurrence (if any) of B in A. In other words, find the smallest k such that, for all $i, 1 \leq i \leq m$, we have $a_{k-1+i}=b_{i}$.

A (non-empty) substring of a string A is a consecutive sequence of characters $a_{i} a_{i+1} \cdots a_{j}(i \leq j)$ from A.

Straightforward String Matching

$A=x y x x y x y x y y x y x y x y y x y x y x x . \quad B=x y x y y x y x y x x$.

Figure: An example of a straightforward string matching.
Source: redrawn from [Manber 1989, Figure 6.20].

Straightforward String Matching (cont.)

What is the time complexity?

Straightforward String Matching (cont.)

What is the time complexity?
$B\left(=b_{1} b_{2} \cdots b_{m}\right)$ may be compared against
(4) $a_{1} a_{2} \cdots a_{m}$,
(4) $a_{2} a_{3} \cdots a_{m+1}$,
(4..., and
(2) $a_{n-m+1} a_{n-m+2} \cdots a_{n}$
6) For example, $A=x x x x \ldots x x x y$ and $B=x x x y$.

Straightforward String Matching (cont.)

What is the time complexity?
$B\left(=b_{1} b_{2} \cdots b_{m}\right)$ may be compared against
(4) $a_{1} a_{2} \cdots a_{m}$,
(4) $a_{2} a_{3} \cdots a_{m+1}$, (4..., and
(2) $a_{n-m+1} a_{n-m+2} \cdots a_{n}$

翻 For example, $A=x x x x \ldots x x x y$ and $B=x x x y$.
So, the time complexity is $O(m \times n)$.

Straightforward String Matching (cont.)

What is the time complexity?
$B\left(=b_{1} b_{2} \cdots b_{m}\right)$ may be compared against

$$
\text { (*) } a_{1} a_{2} \cdots a_{m},
$$

$$
\text { (1) } a_{2} a_{3} \cdots a_{m+1}
$$

© ..., and

$$
\text { (w) } a_{n-m+1} a_{n-m+2} \cdots a_{n}
$$

港 For example, $A=x x x x \ldots x x x y$ and $B=x x x y$.
So, the time complexity is $O(m \times n)$.
But the best possible is linear-time, with a preprocessing.

Straightforward String Matching (cont.)

What is the time complexity?
$B\left(=b_{1} b_{2} \cdots b_{m}\right)$ may be compared against

$$
\text { (w) } a_{1} a_{2} \cdots a_{m}
$$

(w) $a_{2} a_{3} \cdots a_{m+1}$, (w) ..., and
(4) $a_{n-m+1} a_{n-m+2} \cdots a_{n}$

潘 For example, $A=x x x x \ldots x x x y$ and $B=x x x y$.
So, the time complexity is $O(m \times n)$.
But the best possible is linear-time, with a preprocessing.
The cause of deficiency: tries from 7 to 12 in the example are doomed to fail. Why?

Straightforward String Matching (cont.)

What is the time complexity?
$B\left(=b_{1} b_{2} \cdots b_{m}\right)$ may be compared against

$$
\text { (w) } a_{1} a_{2} \cdots a_{m}
$$

(4) $a_{2} a_{3} \cdots a_{m+1}$, (2) ..., and
(4) $a_{n-m+1} a_{n-m+2} \cdots a_{n}$

湤 For example, $A=x x x x \ldots x x x y$ and $B=x x x y$.
So, the time complexity is $O(m \times n)$.
But the best possible is linear-time, with a preprocessing.
The cause of deficiency: tries from 7 to 12 in the example are doomed to fail. Why?
How can we avoid the futile tries?

Matching the Pattern Against Itself

In the example, when the ongoing matching fails at b_{11} against a_{16}, we know that $b_{1} b_{2} \ldots b_{10}$ equals $a_{6} a_{7} \ldots a_{15}$.

Matching the Pattern Against Itself

- In the example, when the ongoing matching fails at b_{11} against a_{16}, we know that $b_{1} b_{2} \ldots b_{10}$ equals $a_{6} a_{7} \ldots a_{15}$.
- The next possible substring of A that equals B must start at a_{13}, because $a_{13} a_{14} a_{15}$ is the longest suffix of $a_{6} a_{7} \ldots a_{15}$ that equals a prefix of $b_{1} b_{2} \ldots b_{10}$, namely $b_{1} b_{2} b_{3}$.

Matching the Pattern Against Itself

- In the example, when the ongoing matching fails at b_{11} against a_{16}, we know that $b_{1} b_{2} \ldots b_{10}$ equals $a_{6} a_{7} \ldots a_{15}$.
- The next possible substring of A that equals B must start at a_{13}, because $a_{13} a_{14} a_{15}$ is the longest suffix of $a_{6} a_{7} \ldots a_{15}$ that equals a prefix of $b_{1} b_{2} \ldots b_{10}$, namely $b_{1} b_{2} b_{3}$.
We can tell this by just looking at B, as $a_{13} a_{14} a_{15}$ equals $b_{8} b_{9} b_{10}$.

Matching the Pattern Against Itself

- In the example, when the ongoing matching fails at b_{11} against a_{16}, we know that $b_{1} b_{2} \ldots b_{10}$ equals $a_{6} a_{7} \ldots a_{15}$.
- The next possible substring of A that equals B must start at a_{13}, because $a_{13} a_{14} a_{15}$ is the longest suffix of $a_{6} a_{7} \ldots a_{15}$ that equals a prefix of $b_{1} b_{2} \ldots b_{10}$, namely $b_{1} b_{2} b_{3}$.
We can tell this by just looking at B, as $a_{13} a_{14} a_{15}$ equals $b_{8} b_{9} b_{10}$.

$$
\left.\begin{array}{ccccccccccc}
B= & x & y & x & y & y & x & y & x & y & x
\end{array}\right]
$$

Figure: Matching the pattern against itself.
Source: redrawn from [Manber 1989, Figure 6.21].

The Values of next

$$
\begin{array}{llllllllllll}
i= & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
B= & x & y & x & y & y & x & y & x & y & x & x \\
\text { next }= & -1 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 3 & 4 & 3
\end{array}
$$

Figure: The values of next.
Source: redrawn from [Manber 1989, Figure 6.22].
The value of next $[j]$ tells the length of the longest proper prefix that is equal to a suffix of $b_{1} b_{2} \ldots b_{j-1}$.

The Values of next

$$
\begin{array}{llllllllllll}
i= & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
B= & x & y & x & y & y & x & y & x & y & x & x \\
\text { next }= & -1 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 3 & 4 & 3
\end{array}
$$

Figure: The values of next.
Source: redrawn from [Manber 1989, Figure 6.22].
The value of next $[j]$ tells the length of the longest proper prefix that is equal to a suffix of $b_{1} b_{2} \ldots b_{j-1}$.

If the ongoing matching fails at b_{j} against a_{i}, then $b_{\text {next }[\mathrm{j}+1}$ is the next to try against a_{i}.

Note: next[1] is set to -1 so that this unique case is easily differentiated (see the main loop of the KMP algorithm).

The KMP Algorithm

Algorithm String_Match (A, n, B, m); begin

$$
j:=1 ; \quad i:=1 ;
$$

Start :=0;

$$
\text { while Start }=0 \text { and } i \leq n \text { do }
$$

$$
\text { if } B[j]=A[i] \text { then }
$$

$$
j:=j+1 ; \quad i:=i+1
$$

else

$$
\begin{aligned}
& j:=\operatorname{next}[j]+1 ; \\
& \text { if } j=0 \text { then }
\end{aligned}
$$

$$
j:=1 ; i:=i+1
$$

if $j=m+1$ then Start $:=i-m$
end

The KMP Algorithm (cont.)

Figure: Computing next(i).
Source: redrawn from [Manber 1989, Figure 6.24].

The KMP Algorithm (cont.)

Algorithm Compute_Next (B, m); begin
$\operatorname{next}[1]:=-1 ; \operatorname{next}[2]:=0$;
for $i:=3$ to m do
$j:=\operatorname{next}[i-1]+1$;
while $B[i-1] \neq B[j]$ and $j>0$ do

$$
j:=\operatorname{next}[j]+1 ;
$$

next[i]:=j
end

The KMP Algorithm (cont.)

What is its time complexity?

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, a_{i} may be compared against
() b_{j},
() b_{j-1},
(\ldots, and
(b_{2}

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, a_{i} may be compared against
(w) b_{j},
(w) b_{j-1},
(4)..., and
(w) b_{2}
2. However, for these to happen, each of $a_{i-j+2}, a_{i-j+3}, \ldots, a_{i-1}$ was compared against the corresponding character in $b_{1} b_{2} \ldots b_{j-1}$ just once.

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, a_{i} may be compared against
(w) b_{j},
(w) b_{j-1},
(4), and
(w) b_{2}

However, for these to happen, each of $a_{i-j+2}, a_{i-j+3}, \ldots, a_{i-1}$ was compared against the corresponding character in $b_{1} b_{2} \ldots b_{j-1}$ just once.
We may re-assign the costs of comparing a_{i} against $b_{j-1}, b_{j-2}, \ldots, b_{2}$ to those of comparing $a_{i-j+2} a_{i-j+3} \ldots a_{i-1}$ against $b_{1} b_{2} \ldots b_{j-1}$.

The KMP Algorithm (cont.)

What is its time complexity?
Because of backtracking, a_{i} may be compared against
(w) b_{j},
(w) b_{j-1},
(... , and
(w) b_{2}

However, for these to happen, each of $a_{i-j+2}, a_{i-j+3}, \ldots, a_{i-1}$ was compared against the corresponding character in $b_{1} b_{2} \ldots b_{j-1}$ just once.
We may re-assign the costs of comparing a_{i} against $b_{j-1}, b_{j-2}, \ldots, b_{2}$ to those of comparing $a_{i-j+2} a_{i-j+3} \ldots a_{i-1}$ against $b_{1} b_{2} \ldots b_{j-1}$.
Every a_{i} is incurred the cost of at most two comparisons.
So, the time complexity is $O(n)$.

String Editing

Problem

Given two strings $A\left(=a_{1} a_{2} \cdots a_{n}\right)$ and $B\left(=b_{1} b_{2} \cdots b_{m}\right)$, find the minimum number of changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

String Editing (cont.)

Let $C(i, j)$ denote the minimum cost of changing $A(i)$ to $B(j)$, where $A(i)=a_{1} a_{2} \cdots a_{i}$ and $B(j)=b_{1} b_{2} \cdots b_{j}$.

For $i=0$ or $j=0$,

$$
\begin{aligned}
& C(i, 0)=i \\
& C(0, j)=j
\end{aligned}
$$

For $i>0$ and $j>0$,

$$
C(i, j)=\min \begin{cases}C(i-1, j)+1 & \left(\text { deleting } a_{i}\right) \\ C(i, j-1)+1 & \left(\text { inserting } b_{j}\right) \\ C(i-1, j-1)+1 & \left(a_{i} \rightarrow b_{j}\right) \\ C(i-1, j-1) & \left(a_{i}=b_{j}\right)\end{cases}
$$

String Editing (cont.)

Figure: The dependencies of $C(i, j)$.
Source: redrawn from [Manber 1989, Figure 6.26].

String Editing (cont.)

Algorithm Minimum_Edit_Distance (A, n, B, m); for $i:=0$ to n do $C[i, 0]:=i$; for $j:=1$ to m do $C[0, j]:=j$;
for $i:=1$ to n do
for $j:=1$ to m do

$$
\begin{aligned}
& x:=C[i-1, j]+1 ; \\
& y:=C[i, j-1]+1 ; \\
& \text { if } a_{i}=b_{j} \text { then } \\
& \quad z:=C[i-1, j-1]
\end{aligned}
$$

else

$$
z:=C[i-1, j-1]+1 ;
$$

$$
C[i, j]:=\min (x, y, z)
$$

String Editing (cont.)

Algorithm Minimum_Edit_Distance (A, n, B, m); for $i:=0$ to n do $C[i, 0]:=i$; for $j:=1$ to m do $C[0, j]:=j$;
for $i:=1$ to n do
for $j:=1$ to m do

$$
\begin{aligned}
& x:=C[i-1, j]+1 ; \\
& y:=C[i, j-1]+1 ; \\
& \text { if } a_{i}=b_{j} \text { then } \\
& \quad z:=C[i-1, j-1]
\end{aligned}
$$

else

$$
z:=C[i-1, j-1]+1 ;
$$

$$
C[i, j]:=\min (x, y, z)
$$

Its time complexity is clearly $O(m n)$.

