

String Processing (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Data Compression

Problem

Given a text (a sequence of characters), find an encoding for the characters that satisfies the prefix constraint and that minimizes the total number of bits needed to encode the text.

The *prefix constraint* states that the prefixes of an encoding of one character must not be equal to a complete encoding of another character.

Denote the characters by c_1, c_2, \dots, c_n and their frequencies by f_1, f_2, \dots, f_n . Given an encoding E in which a bit string s_i represents c_i , the length (number of bits) of the text encoded by using E is $\sum_{i=1}^{n} |s_i| \cdot f_i$.

A Code Tree

Figure: The tree representation of encoding.

Source: redrawn from [Manber 1989, Figure 6.17].

A Huffman Tree

Figure: The Huffman tree for a text with frequencies of A: 5, B: 2, C: 3, D: 4, E: 10, F:1. The code of B, for example, is 1001. The numbers labeling the internal nodes indicate the order in which the corresponding subtrees are formed.

Source: redrawn from [Manber 1989, Figure 6.19].

Huffman Encoding


```
Algorithm Huffman_Encoding (S, f);
  insert all characters into a heap H
     according to their frequencies;
  while H not empty do
     if H contains only one character X then
        make X the root of T
     else
        delete X and Y with lowest frequencies;
           from H:
        create Z with a frequency equal to the
           sum of the frequencies of X and Y;
        insert Z into H:
        make X and Y children of Z in T
```

Huffman Encoding


```
Algorithm Huffman_Encoding (S, f);
  insert all characters into a heap H
     according to their frequencies;
  while H not empty do
     if H contains only one character X then
        make X the root of T
     else
        delete X and Y with lowest frequencies;
           from H:
        create Z with a frequency equal to the
           sum of the frequencies of X and Y;
        insert Z into H:
        make X and Y children of Z in T
```

What is its time complexity?

5 / 18

Huffman Encoding


```
Algorithm Huffman_Encoding (S, f);
  insert all characters into a heap H
     according to their frequencies;
  while H not empty do
     if H contains only one character X then
        make X the root of T
     else
        delete X and Y with lowest frequencies;
           from H:
        create Z with a frequency equal to the
           sum of the frequencies of X and Y;
        insert Z into H:
        make X and Y children of Z in T
```

What is its time complexity? $O(n \log n)$

5 / 18

String Matching

Problem

Given two strings A (= $a_1a_2 \cdots a_n$) and B (= $b_1b_2 \cdots b_m$), find the first occurrence (if any) of B in A. In other words, find the smallest k such that, for all i, $1 \le i \le m$, we have $a_{k-1+i} = b_i$.

A (non-empty) substring of a string A is a consecutive sequence of characters $a_i a_{i+1} \cdots a_j$ ($i \leq j$) from A.

Straightforward String Matching


```
A = xvxxvxvxvxvxvxvxvxvxvxxvxx. B = xvxvvxvxvxxx.
                                             13 14 15
                                      x y
                                             X Y
                                                    X Y
2:
6:
7:
9:
10:
11:
12:
13:
```

Figure: An example of a straightforward string matching.

Source: redrawn from [Manber 1989, Figure 6.20].

What is the time complexity?

- What is the time complexity?
 - $ilde{*}$ $B (= b_1 b_2 \cdots b_m)$ may be compared against
 - $\omega_{a_1a_2\cdots a_m}$
 - $a_2a_3\cdots a_{m+1}$,
 - 🕡 ..., and
 - $a_{n-m+1}a_{n-m+2}\cdots a_n$
 - \red For example, A = xxxx...xxxy and B = xxxy.

- What is the time complexity?
 - $\not = B \ (= b_1 b_2 \cdots b_m)$ may be compared against
 - $a_1a_2\cdots a_m$,
 - $a_2a_3\cdots a_{m+1}$,
 - <section-header> ..., and
 - $a_{n-m+1}a_{n-m+2}\cdots a_n$
 - \red For example, A = xxxx...xxxy and B = xxxy.
- **So, the time complexity is** $O(m \times n)$.

- What is the time complexity?
 - $ilde{*}$ $B (= b_1 b_2 \cdots b_m)$ may be compared against
 - $a_1a_2\cdots a_m$
 - $a_2a_3\cdots a_{m+1}$,
 - <section-header> ..., and
 - $a_{n-m+1}a_{n-m+2}\cdots a_n$
 - \red For example, A = xxxx...xxy and B = xxxy.
- So, the time complexity is $O(m \times n)$.
- But the best possible is linear-time, with a preprocessing.

- What is the time complexity?
 - $\not B = (b_1b_2\cdots b_m)$ may be compared against
 - ω $a_1a_2\cdots a_m$,
 - $a_2a_3\cdots a_{m+1}$,
 - 🕡 ..., and
 - $a_{n-m+1}a_{n-m+2}\cdots a_n$
 - $ilde{*}$ For example, $A = xxxx \dots xxxy$ and B = xxxy.
- So, the time complexity is $O(m \times n)$.
- But the best possible is linear-time, with a preprocessing.
- The cause of deficiency: tries from 7 to 12 in the example are doomed to fail. Why?

- What is the time complexity?
 - $B = (b_1b_2\cdots b_m)$ may be compared against
 - $a_1a_2\cdots a_m$,
 - $\boldsymbol{\omega}$ $a_2a_3\cdots a_{m+1}$,
 - 🕡 ..., and
 - $a_{n-m+1}a_{n-m+2}\cdots a_n$
 - \red For example, $A = xxxx \dots xxxy$ and B = xxxy.
- So, the time complexity is $O(m \times n)$.
- But the best possible is linear-time, with a preprocessing.
- The cause of deficiency: tries from 7 to 12 in the example are doomed to fail. Why?
- How can we avoid the futile tries?

• In the example, when the ongoing matching fails at b_{11} against a_{16} , we know that $b_1b_2 \dots b_{10}$ equals $a_6a_7 \dots a_{15}$.

- In the example, when the ongoing matching fails at b_{11} against a_{16} , we know that $b_1b_2 \ldots b_{10}$ equals $a_6a_7 \ldots a_{15}$.
- The next possible substring of A that equals B must start at a_{13} , because $a_{13}a_{14}a_{15}$ is the longest suffix of $a_6a_7...a_{15}$ that equals a prefix of $b_1b_2...b_{10}$, namely $b_1b_2b_3$.

- In the example, when the ongoing matching fails at b_{11} against a_{16} , we know that $b_1b_2 \dots b_{10}$ equals $a_6a_7 \dots a_{15}$.
- The next possible substring of A that equals B must start at a_{13} , because $a_{13}a_{14}a_{15}$ is the longest suffix of $a_6a_7...a_{15}$ that equals a prefix of $b_1b_2...b_{10}$, namely $b_1b_2b_3$.
- \odot We can tell this by just looking at B, as $a_{13}a_{14}a_{15}$ equals $b_8b_9b_{10}$.

- In the example, when the ongoing matching fails at b_{11} against a_{16} , we know that $b_1b_2 \ldots b_{10}$ equals $a_6a_7 \ldots a_{15}$.
- The next possible substring of A that equals B must start at a_{13} , because $a_{13}a_{14}a_{15}$ is the longest suffix of $a_6a_7\ldots a_{15}$ that equals a prefix of $b_1b_2\ldots b_{10}$, namely $b_1b_2b_3$.
- \odot We can tell this by just looking at B, as $a_{13}a_{14}a_{15}$ equals $b_8b_9b_{10}$.

Figure: Matching the pattern against itself.

The Values of next

$$i = 1$$
 2 3 4 5 6 7 8 9 10 11 $B = x$ y x y y x y x y x y x x x x x

Figure: The values of *next*.

Source: redrawn from [Manber 1989, Figure 6.22].

The value of next[j] tells the length of the longest proper prefix that is equal to a suffix of $b_1b_2...b_{j-1}$.

The Values of next

$$i = 1$$
 2 3 4 5 6 7 8 9 10 13 $B = x$ y x y y x y x y x y x x x x x

Figure: The values of *next*.

Source: redrawn from [Manber 1989, Figure 6.22].

The value of next[i] tells the length of the longest proper prefix that is equal to a suffix of $b_1 b_2 \dots b_{i-1}$.

If the ongoing matching fails at b_i against a_i , then $b_{next[i]+1}$ is the next to try against a_i .

Note: next[1] is set to -1 so that this unique case is easily differentiated (see the main loop of the KMP algorithm).

The KMP Algorithm


```
Algorithm String_Match (A, n, B, m);
begin
   i := 1; i := 1;
    Start := 0:
    while Start = 0 and i < n do
       if B[i] = A[i] then
           i := i + 1; i := i + 1
       else
           i := next[i] + 1;
           if i = 0 then
               i := 1; i := i + 1;
       if i = m + 1 then Start := i - m
```

end

Figure: Computing next(i).

Source: redrawn from [Manber 1989, Figure 6.24].


```
Algorithm Compute_Next (B, m);
begin

next[1] := -1; next[2] := 0;

for i := 3 to m do

j := next[i-1] + 1;

while B[i-1] \neq B[j] and j > 0 do

j := next[j] + 1;

next[i] := j
```


What is its time complexity?

- What is its time complexity?
 - Because of backtracking, ai may be compared against
 - ω b_i ,
 - b_{j-1} ,
 - 🔐 ..., and
 - b_2

- What is its time complexity?
 - Because of backtracking, ai may be compared against
 - b_i ,
 - b_{i-1} ,
 - 🕡 ..., and
 - b_2
 - However, for these to happen, each of $a_{i-j+2}, a_{i-j+3}, \dots, a_{i-1}$ was compared against the corresponding character in $b_1b_2 \dots b_{i-1}$ just once.

- What is its time complexity?
 - Because of backtracking, ai may be compared against
 - 🕠 b_i,
 - b_{i-1} ,
 - 🕡 ..., and
 - b_2
 - However, for these to happen, each of $a_{i-j+2}, a_{i-j+3}, \dots, a_{i-1}$ was compared against the corresponding character in $b_1b_2 \dots b_{i-1}$ just once.
 - We may re-assign the costs of comparing a; against $b_{i-1}, b_{i-2}, \ldots, b_2$ to those of comparing $a_{i-j+2}a_{i-j+3} \ldots a_{i-1}$ against $b_1 b_2 \dots b_{i-1}$.

- What is its time complexity?
 - Because of backtracking, ai may be compared against
 - b_i ,
 - b_{i-1} ,
 - 🕡 ..., and
 - b_2
 - However, for these to happen, each of $a_{i-j+2}, a_{i-j+3}, \dots, a_{i-1}$ was compared against the corresponding character in $b_1b_2 \dots b_{i-1}$ just once.
 - We may re-assign the costs of comparing a; against $b_{j-1}, b_{j-2}, \ldots, b_2$ to those of comparing $a_{i-j+2}a_{i-j+3} \ldots a_{i-1}$ against $b_1 b_2 \dots b_{i-1}$.
 - Every a_i is incurred the cost of at most two comparisons.
- So, the time complexity is O(n).

String Editing

Problem

Given two strings A (= $a_1a_2 \cdots a_n$) and B (= $b_1b_2 \cdots b_m$), find the minimum number of changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

Let C(i, j) denote the minimum cost of changing A(i) to B(j), where $A(i) = a_1 a_2 \cdots a_i$ and $B(j) = b_1 b_2 \cdots b_i$.

For
$$i = 0$$
 or $j = 0$,

$$C(i,0) = i$$

$$C(0,j) = j$$

For i > 0 and i > 0,

$$C(i,j) = \min \left\{ egin{array}{ll} C(i-1,j)+1 & ext{(deleting } a_i) \ C(i,j-1)+1 & ext{(inserting } b_j) \ C(i-1,j-1)+1 & ext{(} a_i
ightarrow b_j) \ C(i-1,j-1) & ext{(} a_i = b_i) \end{array}
ight.$$

Figure: The dependencies of C(i,j).

Source: redrawn from [Manber 1989, Figure 6.26].


```
Algorithm Minimum_Edit_Distance (A, n, B, m);
   for i := 0 to n do C[i, 0] := i;
   for j := 1 to m do C[0, j] := j;
   for i := 1 to n do
       for i := 1 to m do
           x := C[i-1,j]+1;
           v := C[i, i-1] + 1;
           if a_i = b_i then
               z := C[i-1, j-1]
           else
               z := C[i-1, i-1] + 1;
       C[i,j] := min(x,y,z)
```



```
Algorithm Minimum_Edit_Distance (A, n, B, m);
   for i := 0 to n do C[i, 0] := i;
   for j := 1 to m do C[0, j] := j;
   for i := 1 to n do
       for i := 1 to m do
           x := C[i-1, j] + 1;
           v := C[i, i-1] + 1;
           if a_i = b_i then
               z := C[i-1, j-1]
           else
               z := C[i-1, j-1] + 1;
       C[i,j] := min(x,y,z)
```

Its time complexity is clearly O(mn).