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1 Introduction

The Königsberg Bridges Problem
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Figure: The Königsberg bridges problem.
Source: redrawn from [Manber 1989, Figure 7.1].

Can one start from one of the lands, cross every bridge exactly once, and return to the origin?

The Königsberg Bridges Problem (cont.)

An abstract model is more convenient to work with:
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Figure: The graph corresponding to the Königsberg bridges problem.
Source: redrawn from [Manber 1989, Figure 7.2].
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Graphs

• A graph consists of a set of vertices (or nodes) and a set of edges (or links, each normally connecting
two vertices).

• A graph is commonly denoted as G(V,E), where

– G is the name of the graph,

– V is the set of vertices, and

– E is the set of edges.

Note: we assume that you have learned from a course on Data Structures the basics of graph theory and
the representation of a graph by an adjacency matrix or incidence list.

Graphs (cont.)

• Undirected vs. Directed Graph

/* In a directed graph, every edge (connecting two vertices) is oriented, directing from the start vertex
towards the end vertex. */

• Simple Graph vs. Multigraph

/* In a multigraph, multiple edges are allowed between a pair of vertices; the edges are not labeled
(and thus cannot be distinguished). */

• Path, Simple Path, Trail

/* Path often really means simple path (also called open path, where all vertices on the path are
distinct). Trail is just another name for path, but strongly suggests that it may contain a cycle. */

• Cycle, Simple Cycle, Circuit

/* These are special kinds of paths/trails (also called closed paths/trails) where the start and the end
vertices are the same. */

• Degree, In-Degree, Out-Degree

/* The degree of a vertex is the number of edges with the vertex as an end. For a directed graph where
the edges are oriented, the in-degree of a vertex is the number of edges ending at the vertex, while the
out-degree of a vertex is the number of edges starting from the vertex. */

• Connected Graph, Connected Components

/* In a connected graph, every vertex can reach every other vertex via a path. The connected com-
ponents of a graph are the maximal subgraphs of the entire graph that are by themselves connected.
*/

• Tree, Forest

/* Trees are connected graphs without any cycle. A forest is a graph consisting of separate trees (as
subgraphs). */

• Subgraph, Induced Subgraph

/* A vertex-induced subgraph must include every edge in the original graph that connects a pair of
the selected vertices. */

• Spanning Tree, Spanning Forest

/* A spanning tree of a graph is a subgraph of the graph that includes all the vertices and is a tree. */
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• Weighted Graph

/* A weighted graph is a graph where every edge is associated with a number, usually called its weight,
representing its weight, length, or capacity. */

Modeling with Graphs

• Reachability

– Finding program errors

/* A program state corresponds to a vertex and there is a directed edge from one vertex to another
if the program represented by the first vertex may (in one execution step) become the program
state represented by the second vertex. */

– Solving sliding tile puzzles

/* A configuration of the sliding tiles corresponds to a vertex and there is a directed edge from
one vertex to another if the configuration represented by the first vertex may (in one sliding step)
become the configuration represented by the second vertex. */

• Shortest Paths

– Finding the fastest route to a place

– Routing messages in networks

• Graph Coloring

– Coloring maps

– Scheduling classes

/* A class corresponds to a vertex and there is an undirected edge between two vertices if the two
classes represented by the two vertices are taught by the same instructor. The colors represent
the time slots.

Another interpretation: There is an undirected edge between two vertices if there is a time conflict
between the two classes represented by the two vertices. The colors represent the classrooms. */

Eulerian Graphs

Problem 1. Given an undirected connected graph G = (V,E) such that all the vertices have even degrees,
find a circuit P such that each edge of E appears in P exactly once.

The circuit P in the problem statement is called an Eulerian circuit .

Theorem 2. An undirected connected graph has an Eulerian circuit if and only if all of its vertices have
even degrees.

/* Proof sketch:
(The “only if” part) Suppose the graph has an Eulerian circuit. Each time the circuit enters a vertex, it

must also leave the vertex from a different edge. For the first vertex in the circuit, it is left first and entered
at last via a different edge. So, every vertex mustt have an even degree.

(The “if” part) The proof is by induction on the number of edges. Note that the graph must contain at
least a simple cycle, as every vertex is of an even degree.

Base case: the graph is a simple cycle (with one edge or more). The cycle clearly is an Eulerian circuit.
Inductive step: Remove a simple cycle from the graph. The remaining part of the graph may consist of

several separated components. Each component is connected and every vertex in the component also has an
even degree. The induction hypothesis applies to each component. Connecting the removed cycle and the
Eulerian circuit of each component, we have an Eulerian circuit for the entire graph. */
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2 Depth-First Search

Depth-First Search
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Figure: A DFS for an undirected graph.
Source: redrawn from [Manber 1989, Figure 7.4].

/* The numbers (from 1 through 10) show the order in which the vertices are visited by a particular
DFS. */

Depth-First Search (cont.)

Algorithm Depth First Search(G, v);
begin

mark v;
perform preWORK on v;
for all edges (v, w) do

if w is unmarked then
Depth First Search(G,w);

perform postWORK for (v, w)
end

Depth-First Search (cont.)

Algorithm Refined DFS(G, v);
begin

mark v;
perform preWORK on v;
for all edges (v, w) do

if w is unmarked then
Refined DFS(G,w);

perform postWORK for (v, w);
perform postWORK II on v

end
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A “Metaphor” of DFS

Space: the final frontier. These are the voyages of the starship Enterprise. Its five-year mission:
to explore strange new worlds. To seek out new life and new civilizations. To boldly go where
no man/one has gone before!

– Captain James T. Kirk, Star Trek

Connected Components

Algorithm Connected Components(G);
begin

Component Number := 1;
while there is an unmarked vertex v do

Depth First Search(G, v)
(preWORK:

v.Component := Component Number);
Component Number := Component Number + 1

end

Time complexity: O(|E|+ |V |).

/* Each edge of the input graph is checked twice (once from each end). The algorithm also has to scan
possibly many isolated vertices (in some cases, |V | may be larger than |E|). */

DFS Numbers

Algorithm DFS Numbering(G, v);
begin

DFS Number := 1;
Depth First Search(G, v)
(preWORK:

v.DFS := DFS Number;
DFS Number := DFS Number + 1)

end

Time complexity: O(|E|) (assuming the input graph is connected).

The DFS Tree

Algorithm Build DFS Tree(G, v);
begin

Depth First Search(G, v)
(postWORK:

if w was unmarked then
add the edge (v, w) to T );

end
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The DFS Tree (cont.)

Figure: A DFS tree for a directed graph.
Source: redrawn from [Manber 1989, Figure 7.9].

The DFS Tree (cont.)

Lemma 3 (7.2). For an undirected graph G = (V,E), every edge e ∈ E either belongs to the DFS tree T ,
or connects two vertices of G, one of which is the ancestor of the other in T .

For undirected graphs, DFS avoids cross edges (that connect vertices on different subtrees of the DFS
tree).

Lemma 4 (7.3). For a directed graph G = (V,E), if (v, w) is an edge in E such that v.DFS Number <
w.DFS Number, then w is a descendant of v in the DFS tree T .

For directed graphs, cross edges must go “from right to left”.

/* Here we assume that, when there are multiple vertices to choose for the next visit, the leftmost vertex
(according to the layout of the graph) is always chosen first. */

Directed Cycles

Problem 5. Given a directed graph G = (V,E), determine whether it contains a (directed) cycle.

Lemma 6 (7.4). G contains a directed cycle if and only if G contains a back edge (relative to a DFS tree).

A directed edge that goes from a vertex to one of its ancestor vertices (relative to a DFS tree) is called
a back edge.

Directed Cycles (cont.)

Algorithm Find a Cycle(G);
begin

Depth First Search(G, v) /* arbitrary v */
(preWORK:

v.on the path := true;
postWORK:
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if w.on the path then
Find a Cycle := true;
halt;

if w is the last vertex on v’s list then
v.on the path := false;)

end

Directed Cycles (cont.)

Algorithm Refined Find a Cycle(G);
begin

Refined DFS(G, v) /* arbitrary v */
(preWORK:

v.on the path := true;
postWORK:

if w.on the path then
Refined F ind a Cycle := true;
halt;

postWORK II:
v.on the path := false)

end

3 Breadth-First Search

4 Breadth-First Search

Breadth-First Search

Figure: A BFS tree for a directed graph.
Source: redrawn from [Manber 1989, Figure 7.12].

Breadth-First Search (cont.)

Algorithm Breadth First Search(G, v);
begin

mark v;
put v in a queue;
while the queue is not empty do
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remove vertex w from the queue;
perform preWORK on w;
for all edges (w, x) with x unmarked do

mark x;
add (w, x) to the BFS tree T ;
put x in the queue

end

Breadth-First Search (cont.)

Lemma 7 (7.5). If an edge (u,w) belongs to a BFS tree such that u is a parent of w, then u has the minimal
BFS number among vertices with edges leading to w.

Lemma 8 (7.6). For each vertex w, the path from the root to w in T is a shortest path from the root to w
in G.

Lemma 9 (7.7). If an edge (v, w) in E does not belong to T and w is on a larger level, then the level
numbers of w and v differ by at most 1.

Breadth-First Search (cont.)

Algorithm Simple BFS(G, v);
begin

put v in Queue;
while Queue is not empty do

remove vertex w from Queue;
if w is unmarked then

mark w;
perform preWORK on w;
for all edges (w, x) with x unmarked do

put x in Queue
end

Breadth-First Search (cont.)

Algorithm Simple Nonrecursive DFS(G, v);
begin

push v to Stack;
while Stack is not empty do

pop vertex w from Stack;
if w is unmarked then

mark w;
perform preWORK on w;
for all edges (w, x) with x unmarked do

push x to Stack
end

5 Topological Sorting

Topological Sorting
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Problem 10. Given a directed acyclic graph G = (V,E) with n vertices, label the vertices from 1 to n such
that, if v is labeled k, then all vertices that can be reached from v by a directed path are labeled with labels
> k.

Lemma 11 (7.8). A directed acyclic graph always contains a vertex with indegree 0.

Topological Sorting (cont.)

Algorithm Topological Sorting(G);
initialize v.indegree for all vertices; /* by DFS */
G label := 0;
for i := 1 to n do

if vi.indegree = 0 then put vi in Queue;
repeat

remove vertex v from Queue;
G label := G label + 1;
v.label := G label;
for all edges (v, w) do

w.indegree := w.indegree− 1;
if w.indegree = 0 then put w in Queue

until Queue is empty

6 Shortest Paths

Single-Source Shortest Paths

Problem 12. Given a directed graph G = (V,E) and a vertex v, find shortest paths from v to all other
vertices of G.

Shorted Paths: The Acyclic Case

Algorithm Acyclic Shortest Paths(G, v, n);
{Initially, w.SP = ∞, for every node w.}
{A topological sort has been performed on G, . . .}
begin

let z be the vertex labeled n;
if z ̸= v then

Acyclic Shortest Paths(G− z, v, n− 1);
for all w such that (w, z) ∈ E do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z)

else v.SP := 0
end

/* In the case of an acyclic graph, a path from the source vertex v to some other vertex u can never go via
a vertex with a larger label than that of u, according to some topological ordering. So, the shortest paths
from the source vertex v to other vertices may be determined one by one, starting from v, and then the
vertex next in the topological ordering, and so on till the last vertex (labeled n). Every vertex that is not
reachable from the source vertex receives (in the initialization) an ∞ as the length of its shortest path from
the source. */
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The Acyclic Case (cont.)

Algorithm Imp Acyclic Shortest Paths(G, v);
for all vertices w do w.SP := ∞;
initialize v.indegree for all vertices;
for i := 1 to n do

if vi.indegree = 0 then put vi in Queue;
v.SP := 0;
repeat

remove vertex w from Queue;
for all edges (w, z) do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z);

z.indegree := z.indegree− 1;
if z.indegree = 0 then put z in Queue

until Queue is empty

Shortest Paths: The General Case

Algorithm Single Source Shortest Paths(G, v);
// Dijkstra’s algorithm
begin

for all vertices w do
w.mark := false;
w.SP := ∞;

v.SP := 0;
while there exists an unmarked vertex do

let w be an unmarked vertex s.t. w.SP is minimal;
w.mark := true;
for all edges (w, z) such that z is unmarked do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z)

end

Time complexity: O((|E|+ |V |) log |V |) (using a min heap).

/* Dijkstra’s algorithm assumes that the weight of every edge is non-negative. Given the assumption, going
from the source vertex v to some other vertex w will never need to pass any other vertex farther than w. So,
the algorithm determines one at a time (the lengths of) the paths to the 1-st, 2-nd, · · · , n-th closest vertices
(including the source vertex) from the source vertex.

The main loop requires O(|V |) iterations. In each iteration, there is a delete operation on the heap, which
takes O(log |V |) time. The for loop incurs a total of O(|E|) updates to the heap, each taking O(log |V |)
time. */

The General Case (cont.)
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v a b c d e f g h

a 0 1 5 ∞ 9 ∞ ∞ ∞ ∞

c 0 1 5 3 9 ∞ ∞ ∞ ∞

b 0 1 5 3 7 ∞ 12 ∞ ∞

d 0 1 5 3 7 8 12 ∞ ∞

e 0 1 5 3 7 8 12 ∞ ∞

h 0 1 5 3 7 8 12 11 9

g 0 1 5 3 7 8 12 11 9

f 0 1 5 3 7 8 12 11 9

Figure: An example of the single-source shortest-paths algorithm.
Source: redrawn from [Manber 1989, Figure 7.18].

7 Minimum-Weight Spanning Trees

Minimum-Weight Spanning Trees

Problem 13. Given an undirected connected weighted graph G = (V,E), find a spanning tree T of G of
minimum weight.

Theorem 14. Let V1 and V2 be a partition of V and E(V1, V2) be the set of edges connecting nodes in V1

to nodes in V2. The edge with the minimum weight in E(V1, V2) must be in the minimum-cost spanning tree
of G.

/* Apply the theorem, starting with V1 containing an arbitrary vertex, and select the minimum-cost edge
connecting V1 to the rest of the graph. Include the connected vertex and we have an expanded V1 with two
vertices. Repeat this process until we cover all vertices of the graph. This is the essence of Prim’s algorithm
(pseudocode to be given later). */

Minimum-Weight Spanning Trees (cont.)

u’

v’u

v

V1

V2

If cost(u, v) is the smallest among E(V1, V2), then {u, v} must be in the minimum spanning tree.

/* Suppose {u, v} is not chosen. Adding {u, v} to the claimed minimum spanning tree will result in a cycle.
On the cycle, there must be a heavier {u′, v′} from E(V1, V2). Removing {u′, v′} would produce a better
spanning tree, a contradiction. */
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Minimum-Weight Spanning Trees (cont.)

w
u

Figure: Finding the next edge of the MCST.
Source: redrawn from [Manber 1989, Figure 7.19].

Minimum-Weight Spanning Trees (cont.)

Algorithm MST(G);
// A variant of Prim’s algorithm
begin

initially T is the empty set;
for all vertices w do

w.mark := false; w.cost := ∞;
let (x, y) be a minimum cost edge in G;
x.mark := true;
for all edges (x, z) do

z.edge := (x, z); z.cost := cost(x, z);

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost = ∞ then

print “G is not connected”; halt
else

w.mark := true;
add w.edge to T ;
for all edges (w, z) do

if not z.mark then
if cost(w, z) < z.cost then

z.edge := (w, z); z.cost := cost(w, z)
end

Minimum-Weight Spanning Trees (cont.)

Algorithm Another MST(G);
// Prim’s algorithm
begin
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initially T is the empty set;
for all vertices w do

w.mark := false; w.cost := ∞;
x.mark := true; /* x is an arbitrary vertex */
for all edges (x, z) do

z.edge := (x, z); z.cost := cost(x, z);

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost = ∞ then

print “G is not connected”; halt
else

w.mark := true;
add w.edge to T ;
for all edges (w, z) do

if not z.mark then
if cost(w, z) < z.cost then

z.edge := (w, z);
z.cost := cost(w, z)

end

Time complexity: same as that of Dijkstra’s algorithm.

Minimum-Weight Spanning Trees (cont.)

a v b

c
d

e

f g h

1 6
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4 7

9 3

10
13 11

12 5

v a b c d e f g h

v - v(1) v(6) ∞ v(9) ∞ ∞ ∞ ∞
a - - v(6) a(2) v(9) ∞ ∞ ∞ ∞
c - - v(6) - c(4) ∞ c(10) ∞ ∞
d - - v(6) - - d(7) c(10) d(12) ∞
b - - - - - b(3) c(10) d(12) ∞
e - - - - - - c(10) d(12) e(5)
h - - - - - - c(10) h(11) -
f - - - - - - − h(11) -
g - - - - - - − - -

Figure: An example of the minimum-cost spanning-tree algorithm. Source: redrawn from [Manber 1989, Figure

7.21].

8 All Shortest Paths

All Shortest Paths

Problem 15. Given a weighted graph G = (V,E) (directed or undirected) with nonnegative weights, find
the minimum-length paths between all pairs of vertices.
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Basic ideas (of Floyd’s algorithm):

• Introduce the notion of a k-path, where the largest number of the intermediate vertices is k.

• Induct over the sequence of numbers of the vertices.

• The best m-path from u to v is the best (< m)-path from u to m combined with the best (< m)-path
from m to v.

/* Number the n vertices of the given graph from 1 through n. A directed path from node u to node v is
a called a k-path if the largest number of the intermediate nodes (excluding u and v) is k; in the special
case where the path is simply a directed edge from u to v (so there is no intermediate vertex), it is called a
0-path. We write (≤ m)-path to denote a k-path for some k, 0 ≤ k ≤ m; similarly for (< m)-path. It is clear
that the shortest path (if existing) from u to v is some (≤ n)-path. And, that (≤ n)-path may be found via
an induction on the sequence of numbers of the vertices.

We know the 0-paths between all pairs initially, which is the base case. In the inductive step, we determine
the best possible m-path from u to v by combining the best possible (< m)-path from u to m with the best
possible (< m)-path from m to v. Since the weight of every edge is nonnegative (this constraint can be
loosened), there is no point of repeating m via a cycle in the path. */

Floyd’s Algorithm

Algorithm All Pairs Shortest Paths(W );
begin

{initialization}
for i := 1 to n do

for j := 1 to n do
if (i, j) ∈ E then W [i, j] := length(i, j)
else W [i, j] := ∞;

for i := 1 to n do W [i, i] := 0;

for m := 1 to n do {the induction sequence}
for x := 1 to n do

for y := 1 to n do
if W [x,m] +W [m, y] < W [x, y] then

W [x, y] := W [x,m] +W [m, y]
end

/* The graph may contain edges with negative weights, as long as there is no cycle whose total weight is
negative. */

Transitive Closure

Problem 16. Given a directed graph G = (V,E), find its transitive closure.

Algorithm Transitive Closure(A);
begin

{initialization omitted}
for m := 1 to n do

for x := 1 to n do
for y := 1 to n do

if A[x,m] and A[m, y] then
A[x, y] := true

end
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Transitive Closure (cont.)

Algorithm Improved Transitive Closure(A);
begin

{initialization omitted}
for m := 1 to n do

for x := 1 to n do
if A[x,m] then

for y := 1 to n do
if A[m, y] then

A[x, y] := true
end

15


