Basic Graph Algorithms (Based on [Manber 1989])

Yih-Kuen Tsay
Department of Information Management
National Taiwan University

The Königsberg Bridges Problem

Figure: The Königsberg bridges problem.
Source: redrawn from [Manber 1989, Figure 7.1].
Can one start from one of the lands, cross every bridge exactly once, and return to the origin?

The Königsberg Bridges Problem (cont.)

An abstract model is more convenient to work with:

Figure: The graph corresponding to the Königsberg bridges problem. Source: redrawn from [Manber 1989, Figure 7.2].

Graphs

-

A graph consists of a set of vertices (or nodes) and a set of edges (or links, each normally connecting two vertices).

- A graph is commonly denoted as $G(V, E)$, where
* G is the name of the graph,

在 V is the set of vertices, and
淃 E is the set of edges.
Note: we assume that you have learned from a course on Data Structures the basics of graph theory and the representation of a graph by an adjacency matrix or incidence list.

Graphs (cont.)

- Undirected vs. Directed Graph
- Simple Graph vs. Multigraph
- Path, Simple Path, Trail
- Cycle, Simple Cycle, Circuit

Degree, In-Degree, Out-Degree

- Connected Graph, Connected Components
- Tree, Forest

Subgraph, Induced Subgraph
Spanning Tree, Spanning Forest

- Weighted Graph

Modeling with Graphs

- Reachability

Finding program errors
Solving sliding tile puzzles

- Shortest Paths
* Finding the fastest route to a place

Routing messages in networks
Graph Coloring
Coloring maps
Scheduling classes

Eulerian Graphs

Problem

Given an undirected connected graph $G=(V, E)$ such that all the vertices have even degrees, find a circuit P such that each edge of E appears in P exactly once.

The circuit P in the problem statement is called an Eulerian circuit.

Theorem

An undirected connected graph has an Eulerian circuit if and only if all of its vertices have even degrees.

Depth-First Search

Figure: A DFS for an undirected graph.
Source: redrawn from [Manber 1989, Figure 7.4].

Depth-First Search (cont.)

Algorithm Depth_First_Search(G, v); begin
mark v;
perform preWORK on v;
for all edges (v, w) do
if w is unmarked then
Depth_First_Search($G, w)$;
perform postWORK for (v, w)
end

Depth-First Search (cont.)

Algorithm Refined_DFS(G, v); begin

mark v;
perform preWORK on v;
for all edges (v, w) do
if w is unmarked then
Refined_DFS(G, w);
perform postWORK for (v, w);
perform postWORK_II on v
end

A "Metaphor" of DFS

Space: the final frontier. These are the voyages of the starship Enterprise. Its five-year mission: to explore strange new worlds. To seek out new life and new civilizations. To boldly go where no man/one has gone before!

- Captain James T. Kirk, Star Trek

Connected Components

Algorithm Connected_Components(G); begin

Component_Number := 1 ;
while there is an unmarked vertex v do
Depth_First_Search(G, v)
(preWORK:
v.Component :=Component_Number);

Component_Number := Component_Number +1
end

Connected Components

Algorithm Connected_Components(G); begin

Component_Number := 1 ;
while there is an unmarked vertex v do Depth_First_Search(G, v) (preWORK:
v.Component :=Component_Number);

Component_Number := Component_Number +1 end

Time complexity:

Connected Components

Algorithm Connected_Components(G); begin

Component_Number := 1 ;
while there is an unmarked vertex v do Depth_First_Search(G, v) (preWORK:
v.Component :=Component_Number);

Component_Number := Component_Number +1 end

Time complexity: $O(|E|+|V|)$.

DFS Numbers

Algorithm DFS_Numbering (G, v); begin

DFS_Number := 1;
Depth_First_Search(G, v)
(preWORK:
v.DFS := DFS_Number;

DFS_Number := DFS_Number + 1)
end

DFS Numbers

Algorithm DFS_Numbering (G, v); begin

DFS_Number := 1;
Depth_First_Search(G, v)
(preWORK:
v.DFS := DFS_Number;

DFS_Number := DFS_Number + 1)
end

Time complexity: $O(|E|)$ (assuming the input graph is connected).

The DFS Tree

Algorithm Build_DFS_Tree(G, v); begin
 Depth_First_Search(G, v)
 (postWORK:

if w was unmarked then add the edge (v, w) to T); end

The DFS Tree (cont.)

Figure: A DFS tree for a directed graph.
Source: redrawn from [Manber 1989, Figure 7.9].

The DFS Tree (cont.)

Lemma (7.2)

For an undirected graph $G=(V, E)$, every edge $e \in E$ either belongs to the DFS tree T, or connects two vertices of G, one of which is the ancestor of the other in T.

For undirected graphs, DFS avoids cross edges.

Lemma (7.3)

For a directed graph $G=(V, E)$, if (v, w) is an edge in E such that $v . D F S _$Number < w.DFS_Number, then w is a descendant of v in the DFS tree T.

For directed graphs, cross edges must go "from right to left".

Directed Cycles

Problem

Given a directed graph $G=(V, E)$, determine whether it contains a (directed) cycle.

Lemma (7.4)

G contains a directed cycle if and only if G contains a back edge (relative to the DFS tree).

Directed Cycles (cont.)

Algorithm Find_a_Cycle(G);
begin
Depth_First_Search(G,v) /* arbitrary v */
(preWORK:
v.on_the_path := true;
postWORK:
if w.on_the_path then
Find_a_Cycle := true; halt;
if w is the last vertex on v 's list then
v.on_the_path := false;)
end

Directed Cycles (cont.)

Algorithm Refined_Find_a_Cycle(G);

 beginRefined_DFS (G,v) /* arbitrary v */
(preWORK:
v.on_the_path := true; postWORK:
if w.on_the_path then Refined_Find_a_Cycle := true; halt; postWORK_II:
v.on_the_path := false)
end

Breadth-First Search

Figure: A BFS tree for a directed graph.
Source: redrawn from [Manber 1989, Figure 7.12].

Breadth-First Search (cont.)

Algorithm Breadth_First_Search(G, v); begin
mark v;
put v in a queue;
while the queue is not empty do
remove vertex w from the queue;
perform preWORK on w;
for all edges (w, x) with x unmarked do
mark x;
add (w, x) to the BFS tree T;
put x in the queue
end

Breadth-First Search (cont.)

Lemma (7.5)

If an edge (u, w) belongs to a BFS tree such that u is a parent of w, then u has the minimal BFS number among vertices with edges leading to w.

Lemma (7.6)
For each vertex w, the path from the root to w in T is a shortest path from the root to w in G.

Lemma (7.7)

If an edge (v, w) in E does not belong to T and w is on a larger level, then the level numbers of w and v differ by at most 1 .

Breadth-First Search (cont.)

Algorithm Simple_BFS(G, v); begin
put v in Queue;
while Queue is not empty do
remove vertex w from Queue;
if w is unmarked then
mark w;
perform preWORK on w; for all edges (w, x) with x unmarked do put x in Queue
end

Breadth-First Search (cont.)

Algorithm Simple_Nonrecursive_DFS(G, v); begin
push v to Stack;
while Stack is not empty do
pop vertex w from Stack;
if w is unmarked then
mark w;
perform preWORK on w;
for all edges (w, x) with x unmarked do push x to Stack
end

Topological Sorting

Problem

Given a directed acyclic graph $G=(V, E)$ with n vertices, label the vertices from 1 to n such that, if v is labeled k, then all vertices that can be reached from v by a directed path are labeled with labels $>k$.

Lemma (7.8)

A directed acyclic graph always contains a vertex with indegree 0 .

Topological Sorting (cont.)

Algorithm Topological_Sorting (G);
initialize v.indegree for all vertices; /* by DFS */
G_label := 0;
for $i:=1$ to n do
if v_{i}.indegree $=0$ then put v_{i} in Queue;
repeat
remove vertex v from Queue;
G_label := G_label + 1;
v.label := G_label;
for all edges (v, w) do
w.indegree $:=$ w.indegree -1 ;
if w.indegree $=0$ then put w in Queue
until Queue is empty

Single-Source Shortest Paths

Problem

Given a directed graph $G=(V, E)$ and a vertex v, find shortest paths from v to all other vertices of G.

Shorted Paths: The Acyclic Case

Algorithm Acyclic_Shortest_Paths (G, v, n); $\{$ Initially, $w \cdot S P=\infty$, for every node w.\}
$\{$ A topological sort has been performed on G, \ldots \} begin
let z be the vertex labeled n;
if $z \neq v$ then
Acyclic_Shortest_Paths($G-z, v, n-1$); for all w such that $(w, z) \in E$ do if $w . S P+$ length $(w, z)<z . S P$ then
$z . S P:=w . S P+l$ length (w, z)
else $v . S P:=0$
end

The Acyclic Case (cont.)

Algorithm Imp_Acyclic_Shortest_Paths(G, v);
for all vertices w do $w . S P:=\infty$;
initialize v.indegree for all vertices;
for $i:=1$ to n do
if v_{i}.indegree $=0$ then put v_{i} in Queue;
$v . S P:=0$;
repeat
remove vertex w from Queue;
for all edges (w, z) do
if $w . S P+$ length $(w, z)<z . S P$ then $z . S P:=w . S P+\operatorname{length}(w, z)$;
z.indegree $:=$ z.indegree -1 ;
if z.indegree $=0$ then put z in Queue
until Queue is empty

Shortest Paths: The General Case

Algorithm Single_Source_Shortest_Paths(G, v);
// Dijkstra's algorithm
begin
for all vertices w do
w.mark := false;
$w . S P:=\infty$;
$v . S P:=0$;
while there exists an unmarked vertex do
let w be an unmarked vertex s.t. $w . S P$ is minimal;
w.mark := true;
for all edges (w, z) such that z is unmarked do

$$
\begin{gathered}
\text { if } w \cdot S P+\text { length }(w, z)<z . S P \text { then } \\
z . S P:=w \cdot S P+\text { length }(w, z)
\end{gathered}
$$

end

Shortest Paths: The General Case

Algorithm Single_Source_Shortest_Paths(G, v);
// Dijkstra's algorithm
begin
for all vertices w do
w.mark := false;
$w . S P:=\infty$;
$v . S P:=0$;
while there exists an unmarked vertex do
let w be an unmarked vertex s.t. $w . S P$ is minimal;
w.mark := true;
for all edges (w, z) such that z is unmarked do

$$
\begin{gathered}
\text { if } w . S P+\text { length }(w, z)<z . S P \text { then } \\
z . S P:=w \cdot S P+\text { length }(w, z)
\end{gathered}
$$

end
Time complexity:

Shortest Paths: The General Case

Algorithm Single_Source_Shortest_Paths(G, v);
// Dijkstra's algorithm
begin
for all vertices w do
w.mark := false;
$w . S P:=\infty$;
$v . S P:=0$;
while there exists an unmarked vertex do
let w be an unmarked vertex s.t. $w . S P$ is minimal;
w.mark := true;
for all edges (w, z) such that z is unmarked do

$$
\begin{gathered}
\text { if } w . S P+\text { length }(w, z)<z . S P \text { then } \\
z . S P:=w \cdot S P+\text { length }(w, z)
\end{gathered}
$$

end
Time complexity: $O((|E|+|V|) \log |V|)$ (using a min heap).

The General Case (cont.)

Figure: An example of the single-source shortest-paths algorithm. Source: redrawn from [Manber 1989, Figure 7.18].

Minimum-Weight Spanning Trees

Problem

Given an undirected connected weighted graph $G=(V, E)$, find a spanning tree T of G of minimum weight.

Theorem

Let V_{1} and V_{2} be a partition of V and $E\left(V_{1}, V_{2}\right)$ be the set of edges connecting nodes in V_{1} to nodes in V_{2}. The edge with the minimum weight in $E\left(V_{1}, V_{2}\right)$ must be in the minimum-cost spanning tree of G.

Minimum-Weight Spanning Trees (cont.)

If $\operatorname{cost}(u, v)$ is the smallest among $E\left(V_{1}, V_{2}\right)$, then $\{u, v\}$ must be in the minimum spanning tree.

Minimum-Weight Spanning Trees (cont.)

Figure: Finding the next edge of the MCST. Source: redrawn from [Manber 1989, Figure 7.19].

Minimum-Weight Spanning Trees (cont.)

Algorithm MST(G);
// A variant of Prim's algorithm
begin
initially T is the empty set;
for all vertices w do

$$
\text { w.mark }:=\text { false; w.cost }:=\infty \text {; }
$$

let (x, y) be a minimum cost edge in G;
x.mark := true;
for all edges (x, z) do

$$
\text { z.edge }:=(x, z) ; \quad \text { z.cost }:=\cos t(x, z) ;
$$

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if $w \cdot \operatorname{cost}=\infty$ then
print "G is not connected"; halt
else
w.mark := true;
add w.edge to T; for all edges (w, z) do
if not z.mark then
if $\operatorname{cost}(w, z)<z$.cost then

$$
z . e d g e ~:=(w, z) ; \quad \text { z.cost }:=\operatorname{cost}(w, z)
$$

end

Minimum-Weight Spanning Trees (cont.)

Algorithm Another_MST(G);
// Prim's algorithm
begin
initially T is the empty set;
for all vertices w do

$$
\text { w.mark }:=\text { false; w.cost }:=\infty ;
$$

$x . m a r k:=$ true; $/^{*} x$ is an arbitrary vertex */
for all edges (x, z) do
z.edge $:=(x, z) ; \quad z . \cos t:=\operatorname{cost}(x, z) ;$

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost $=\infty$ then
print "G is not connected"; halt
else
w.mark := true;
add w.edge to T;
for all edges (w, z) do
if not z.mark then
if $\operatorname{cost}(w, z)<z$.cost then
z.edge $:=(w, z)$;
$z . \cos t:=\operatorname{cost}(w, z)$
end

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost $=\infty$ then
print "G is not connected"; halt
else

> w.mark $:=$ true;
> add w.edge to T
for all edges (w, z) do
if not z.mark then
if $\operatorname{cost}(w, z)<z$.cost then
z.edge $:=(w, z)$;
$z . \cos t:=\operatorname{cost}(w, z)$
end

Time complexity:

Minimum-Weight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
if w.cost $=\infty$ then
print "G is not connected"; halt
else
w.mark := true;
add w.edge to T;
for all edges (w, z) do
if not z.mark then
if $\operatorname{cost}(w, z)<z$.cost then
z.edge $:=(w, z)$;
$z . \cos t:=\operatorname{cost}(w, z)$
end

Time complexity: same as that of Dijkstra's algorithm.

Minimum-Weight Spanning Trees (cont.)

| | v | a | b | c | d | e | f | g | h |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| v | - | $\mathrm{v}(1)$ | $\mathrm{v}(6)$ | ∞ | $\mathrm{v}(9)$ | ∞ | ∞ | ∞ | ∞ |
| a | - | - | $\mathrm{v}(6)$ | $a(2)$ | $\mathrm{v}(9)$ | ∞ | ∞ | ∞ | ∞ |
| c | - | - | $\mathrm{v}(6)$ | - | $\mathrm{c}(4)$ | ∞ | $c(10)$ | ∞ | ∞ |
| d | - | - | $\mathrm{v}(6)$ | - | - | $\mathrm{d}(7)$ | $c(10)$ | $\mathrm{d}(12)$ | ∞ |
| b | - | - | - | - | - | $\mathrm{b}(3)$ | $c(10)$ | $\mathrm{d}(12)$ | ∞ |
| e | - | - | - | - | - | - | $c(10)$ | $\mathrm{d}(12)$ | $\mathrm{e}(5)$ |
| h | - | - | - | - | - | - | $c(10)$ | $\mathrm{h}(11)$ | - |
| f | - | - | - | - | - | - | - | $\mathrm{h}(11)$ | - |
| g | - | - | - | - | - | - | - | - | - |

Figure: An example of the minimum-cost spanning-tree algorithm. Source: redrawn from [Manber 1989, Figure 7.21].

All Shortest Paths

Problem

Given a weighted graph $G=(V, E)$ (directed or undirected) with nonnegative weights, find the minimum-length paths between all pairs of vertices.

All Shortest Paths

Problem

Given a weighted graph $G=(V, E)$ (directed or undirected) with nonnegative weights, find the minimum-length paths between all pairs of vertices.

Basic ideas (of Floyd's algorithm):

- Introduce the notion of a k-path, where the largest number of the intermediate vertices is k.
- Induct over the sequence of numbers of the vertices.

The best m-path from u to v is the best $(<m)$-path from u to m combined with the best $(<m)$-path from m to v.

Floyd's Algorithm

Algorithm All_Pairs_Shortest_Paths(W); begin
\{initialization\}
for $i:=1$ to n do
for $j:=1$ to n do
if $(i, j) \in E$ then $W[i, j]:=\operatorname{length}(i, j)$
else $W[i, j]:=\infty$;
for $i:=1$ to n do $W[i, i]:=0$;
for $m:=1$ to n do $\{$ the induction sequence\} for $x:=1$ to n do for $y:=1$ to n do
if $W[x, m]+W[m, y]<W[x, y]$ then
$W[x, y]:=W[x, m]+W[m, y]$
end

Transitive Closure

Problem

Given a directed graph $G=(V, E)$, find its transitive closure.
Algorithm Transitive_Closure(A); begin
\{initialization omitted\}
for $m:=1$ to n do
for $x:=1$ to n do for $y:=1$ to n do if $A[x, m]$ and $A[m, y]$ then $A[x, y]:=$ true
end

Transitive Closure (cont.)

Algorithm Improved_Transitive_Closure(A); begin
\{initialization omitted\}
for $m:=1$ to n do
for $x:=1$ to n do
if $A[x, m]$ then

$$
\text { for } y:=1 \text { to } n \text { do }
$$

if $A[m, y]$ then

$$
A[x, y]:=\text { true }
$$

end

