Homework 2

Yu Hsiao Yu-Hsuan Wu

=] & = E DAl
Yu Hsiao Yu-Hsuan Wu Homework 2

Question 1

Consider again the inductive definition in HW+#1 for the set of all binary trees that store
non-negative integer key values:

e The empty tree, denoted L, is a binary tree, storing no key value.

e If t; and ¢, are binary trees, then node(k,t;,t,), where k € Z and k > 0, is also a
binary tree with the root storing key value k.

(a) Refine the definition to include only binary search trees where an inorder traversal
of a binary search tree produces a list of all stored key values in increasing order.

(b) Further refine the definition to include only AVL trees, which are binary search trees
where the heights of the left and the right children of every internal node differ by
at most 1. You may reuse the function discussed in class for computing the height
of a given binary tree.

In each case, the new definition should remain inductive.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 2/20

Question 1

Inductive definition of all binary trees:
© The empty tree, denoted L, is a binary tree.

@ If t; and t, are binary trees,
then node(k, t;, t,), where k € Z and k > 0,
is also a binary tree.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 3/20

Question 1(a)

Inductive definition of binary search trees:
© The empty tree, denoted L, is a binary search tree.

@ If t; and t, are binary search trees, and Max(t)) < k < Min(t,),
then node(k, t), t,), where k € Z and k > 0, is also a binary
search tree.

Max(T) 0 if T=_1.
) X =
max(k, max(Max(t)), Max(t,))) if T= node(k, t,t,),

if x>
, where max(x, y) = {X "X .y
y otherwise.

Min(T) + oo if T=_1.
in(T) =
min(k, min(Min(t)), Min(t,))) if T= node(k, t;, t.),

x ifx<y

, where min(x, y) = { ;
y otherwise.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 4/20

Question 1(b)

Inductive definition of AVL binary search trees:
© The empty tree, denoted L (with a height of —1), is an AVL
binary search tree.

@ If t; and t, are AVL binary search trees, and
Max(t;) < k < Min(t,) and |H(t,) — H(t))| <1,
then node(k, t), t,), where k € Z and k > 0,
is also an AVL binary search tree.

-1 if T=_1.
H(T) = -
max(H(t,),)+ 1 if T= node(k, t,t,),

if x>y
, where max(x, y)
y otherwise.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 5/20

Question 2

Prove by induction that the regions formed by a planar graph all of whose vertices have
even degrees can be colored with two colors such that no two adjacent regions (sharing
one or more edges) have the same color.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 6/20

Question 2

The proof is by strong induction on R.

[Base Case| (R= 1) Given a planar graph G with all of its vertices
have even degrees and 1 region, we can always color the graph with
two colors such that no two adjacent regions have the same color.

[Inductive Step] (R= k+ 1 > 1) Suppose that for R < k, any planar
graph G with all of its vertices have even degrees and R regions can
be colored with two colors such that no two adjacent regions have
the same color. We want to prove that for R = k+ 1, the statement
still holds.

Let H be a planar graph with all of its vertices have even degrees and
R = k+ 1 regions.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 7/20

Question 2

Since all of its vertices have even degrees, we can always find a cycle
on H. Now for simplicity, we arbitrarily pick a region, which is formed
by a cycle. See Fig.1.

Note that if we remove the cycle, we get a new planar graph G with
all of its vertices remaining even degrees (since removing a cycle will
reduce 1 in-degree and 1 out-degree for any vertex on the cycle) and
R regions, R < k (since removing any edge on the cycle will merge
the adjacent regions into one, so we cannot guarantee R’ to be
exactly k, however, we can make sure that R < k).

That is, by Induction Hypothesis, G can be colored with two colors
such that no two adjacent regions have the same color. See Fig.2.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 8/20

Question 2

Moreover, when adding back the cycle and turning the graph back to
k + 1 regions, the recovered regions (separated by edges we removed
at the beginning) now has the same color with its adjacent regions.
See Fig.3.

Now we can turn the color of the recovered regions inside the cycle
to the opposite one, and we can obtain a planar graph H with k+ 1
regions and colored with two colors such that no two adjacent
regions have the same color, hence the proof is done. See Fig.4.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 9/20

Question 2

Figure 1: H with k+ 1 regions Figure 3: H with k+ 1 regions

&

Figure 2: G with R < k regions Figure 4: H with k+ 1 regions

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 10/20

Question 3

(2.30) A full binary tree is defined inductively as follows. (Note: some authors prefer
using the name “perfect binary tree” or “complete binary tree”, while reserving “full
binary tree” for another variant of binary trees.) A full binary tree of height 0 consists
of 1 node which is the root. A full binary tree of height h + 1 consists of two full binary
trees of height h whose roots are connected to a new root. Let T" be a full binary tree of
height h. The height of a node in T is h minus the node’s distance from the root (e.g.,
the root has height h, whereas a leaf has height 0). Prove that the sum of the heights of
all the nodes in T is 2"t1 — h — 2.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 11/20

Question 3
The proof is by induction on h.

[Claim] For a full binary tree T of height h, The sum of the heights of
all nodes in Tis 21 — h — 2.

[Base Case] (h=0)2'—-0—-2=0
[Inductive Step| (h > 0)

The sum of the heights for a tree with height h
= (sum of the heights for t; and t, + height of the root)
=2x (2"—(h—1)—=2) +h
=2M1 _2h—2+h
_ohtl _p_ 9

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 12/20

Question 4

Consider the following two-player game: given a positive integer N, player A and player
B take turns counting to N. In her/his turn, a player may advance the count by 1 or 2.
For example, player A may start by saying “1, 2”, player B follows by saying “3”, player
A follows by saying “4”, etc. The player who eventually has to say the number N loses
the game.

A game is determined if one of the two players always has a way to win the game. Prove
by induction that the counting game as described is determined for any positive integer
N; the winner may differ for different given integers. (Hint: think about the remainder of
the number N divided by 3.)

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 13 /20

Question 4

The proof is by induction on N.
Without loss of generality, we let A always be the starter.

[Claim]| A game is always determined with N > 1 by:
N=1 (mod 3): B wins
N =2 (mod 3): A wins
N=0 (mod 3): A wins
[Base Case| (N=1,2,3)
N=1: Ais forced to count “1"”, so B wins.
N = 2: A has a winning strategy by counting “1", so A wins.
N = 3: A has a winning strategy by counting “1, 2", so A wins.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 14 /20

Question 4

[Inductive Step] (N > 3)
N=1 (mod 3):

By induction hypothesis, we know that B has a winning strategy at
N — 3. It implies B can always force A to say “N - 3". No matter
what A says in the next round (“N - 3" or “N - 3, N - 2") B can
always count up to “N", forcing A to say “N".

N=0,2 (mod 3):

By induction hypothesis, we know that A has a winning strategy at
N — 3. It implies A can always force B to say “N - 3". No matter
what A says in the next round (“N - 3" or “N - 3, N - 2") A can
always count up to “N", forcing B to say “N".

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 15/20

Question 5

Consider the following algorithm for computing the square of the input number n, which
is assumed to be a positive integer.

Algorithm mySquare(n);

begin
// assume that n > 0
T = n;
y=10

while z > 0 do
y:=y+2xzx-1
r:=z—1
od;
mySquare := y
end

State a suitable loop invariant for the while loop and prove its correctness by induction.

The loop invariant should be strong enough for deducing that, when the while loop ter-
minates, the value of y equals the square of n.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 16 /20

Question 5

To start with, we first state a suitable loop invariant for the while
loop. Observe that when running the while loop, the relation of x and
y is as follow:

x|n|n-1|n—-21|n=-3 /|- n—k
y|0|2n—1|4n—4|6n—9 | - | (2k)n— K

That is, we have x = n — k, y = (2k)n — K.
Now we apply k=n— xto y:
y=(2k)n — K
=2(n—x)n— (n—x)*
=2n* — 2xn — (n* — 2xn + X°)
— PR

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 17 /20

Question 5

That is, we know that y = n> — X% throughout the while loop, and
since x = n at the beginning and x = 0 at the end, we know that

n>x>0.

Thus, we find the loop invariant to be {0 < x < n Ay = n* — x*}.
Now, we want to prove its correctness by induction.

[Base case| (0-th iteration) {0 < n<nAy=n>—n*>=0}.

[Inductive step] (k-th iteration) Suppose the loop invariant holds
after the (k — 1)-th iteration, and we want to prove the correctness
of the loop invariant after the k-th iteration.

Let (xx, yk) be the (x,y) values at the k-th iteration. From the given
algorithm, we have (x, yx) = (xk-1 — 1, yuo1 + 2x,_1 — 1).

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 18 /20

Question 5
Recall we have the loop invariant {0 < x < nAy = n? — x*}.

0 0 < x<n 0<x,<nistrue, since x, = x,_; — 1 and
0 < x1 < n.

Note that x,_; should be larger than 0. If x,, = 0 for some

m < n, then the program terminates at the m-th iteration.
Since we are discussing the k-th iteration, we can guarantee that
the program won't terminates at the (k — 1)-th iteration.

@ y=n? — x> We can derive this result by some substitutions:
Yk = Yke1+ 2x,-1 — 1
= (" =X 1) +2x1— 1
(X1 — 1)?

n2—
e

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 19/20

Question 5

Thus, we prove the correctness of the loop invariant by induction.

Note that when the while loop terminates, which means x = 0, with
the loop invariant {0 < x < n Ay = n*> — X}, we have
y=n?>— x> = n?> — 0% = n?, which satisfies our assertion that the

value of y equals the square of n.

Yu Hsiao Yu-Hsuan Wu Homework 2 Algorithms 2024 20/20

	Introduction

