Homework 3

Yu Hsiao Yu-Hsuan Wu

1. (3.5) For each of the following pairs of functions, determine whether f(n) = O(g(n)) and/or $f(n) = \Omega(g(n))$. Justify your answers.

$$f(n) \quad g(n)$$
(a)
$$\frac{n}{\log n} \quad (\log n)^2$$
(b)
$$n^3 2^n \quad 3^n$$

f(n) = O(g(n)):

$$\exists c, N > 0 \text{ s.t. } f(n) \leq c \cdot g(n) \text{ holds } \forall n \geq N.$$

$$f(n) = \Omega(g(n)):$$

$$\exists c, N > 0 \text{ s.t. } f(n) \geq c \cdot g(n) \text{ holds } \forall n \geq N.$$

$$f(n) = o(g(n)):$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$\Rightarrow \text{ if } f(n) = o(g(n)), \text{ then } f(n) = O(g(n)) \text{ and } f(n) \neq \Omega(g(n)).$$

 \Rightarrow if g(n) = o(f(n)), then $f(n) = \Omega(g(n))$ and $f(n) \neq O(g(n))$.

Question 1 (a)

$$f(n) = \frac{n}{\log n}$$
, $g(n) = (\log n)^2$:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{(\log n)^3}{n}$$

$$\stackrel{\text{L'H}}{=} \lim_{n \to \infty} \frac{3(\log n)^2}{n \ln 10}$$

$$\stackrel{\text{L'H}}{=} \lim_{n \to \infty} \frac{6 \log n}{n (\ln 10)^2}$$

$$\stackrel{\text{L'H}}{=} \lim_{n \to \infty} \frac{6}{n (\ln 10)^3}$$

$$= 0$$

Question 1 (a)

Since
$$\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$$
, $g(n) = o(f(n))$,

which implies $f(n) = \Omega(g(n))$ and $f(n) \neq O(g(n))$.

Question 1 (b)

$$f(n) = n^3 2^n, \ g(n) = 3^n:$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^3 2^n}{3^n} = \lim_{n \to \infty} \frac{n^3}{\left(\frac{3}{2}\right)^n}$$

$$\{ \text{apply L'Hôpital's rule 3 times} \}$$

$$= \lim_{n \to \infty} \frac{6}{(\ln \frac{3}{2})^3 (\frac{3}{2})^n}$$

$$= 0$$

Question 1 (b)

Since
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
, $f(n) = o(g(n))$,

which implies
$$f(n) = O(g(n))$$
 and $f(n) \neq \Omega(g(n))$.

Yu Hsiao Yu-Hsuan Wu

2. Suppose f is a strictly increasing function that maps every positive integer to another positive integer, i.e., if $1 \le n_1 < n_2$, then $1 \le f(n_1) < f(n_2)$, and f(n) = O(g(n)) for some other function g. Is it true that $\log f(n) = O(\log g(n))$? Please justify your answer. How about $2^{f(n)} = O(2^{g(n)})$? Is it true?

(big-o)
$$f(n) = O(g(n))$$
:
 $\exists c, N > 0 \text{ s.t. } f(n) \leq c \cdot g(n) \text{ holds } \forall n \geq N.$

$$(1) \log f(n) \stackrel{?}{=} O(\log g(n))$$

$$\log f(n) \leq \log(c \cdot g(n)) = \log(c) + \log g(n)$$

$$= \log g(n) \cdot (1 + \frac{\log(c)}{\log g(n)})$$

$$\leq \log g(n) \cdot (1 + \frac{\log(c)}{\log g(N)})$$

$$\leq \log g(n) \cdot c', \text{ where } c' > 0.$$

s.t. $\log f(n) \le c' \cdot \log g(n)$ holds $\forall n \ge N$.

$$\Rightarrow \log f(n) = O(\log g(n)).$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 Q C

(2)
$$2^{f(n)} \stackrel{?}{=} O(2^{g(n)})$$

We can only get $2^{f(n)} \leq 2^{c \cdot g(n)} = (2^{g(n)})^c$
and it doesn't imply $2^{f(n)} = O(2^{g(n)})$.
The hypothesis $2^{f(n)} = O(2^{g(n)})$ can simply be rejected with a counter example: $f(n) = 2\log_2(n)$, $g(n) = \log_2(n)$.
 $f(n) = O(\log(n)) = O(g(n))$
 $2^{f(n)} = 2^{2\log_2(n)} = n^2 = O(n^2)$
 $2^{g(n)} = 2^{\log_2(n)} = n = O(n)$
 $O(n^2) \notin O(n)$
 $\Rightarrow 2^{f(n)} \neq O(2^{g(n)})$

3. Solve the following recurrence relation using *generating functions*. This is a very simple recurrence relation, but for the purpose of practicing you must use generating functions in your solution.

$$\begin{cases} T(1) = 1 \\ T(2) = 3 \\ T(n) = T(n-1) + 2 \ T(n-2), \ n \ge 3 \end{cases}$$

Let
$$T_n = T(n)$$
, $G(z) = T_1 + T_2 z + T_3 z^2 + \dots + T_n z^{n-1} + \dots$

$$G(z) = T_1 + T_2 z + T_3 z^2 + \dots + T_{n-1} z^n + \dots$$

$$zG(z) = T_1 z + T_2 z^2 + \dots + T_{n-2} z^n + \dots$$

$$2z^2 G(z) = 2T_1 z^2 + \dots + 2T_{n-3} z^n + \dots$$

$$(1 - z - 2z^2) G(z) = T_1 + (T_2 - T_1)z - (T_3 - T_2 - 2T_1)z^2$$

$$= 1 + 2z + 0$$

$$= 1 + 2z$$

$$G(z) = \frac{1 + 2z}{1 - z - 2z^2}$$

$$G(z) = \frac{1+2z}{1-z-2z^2}$$

$$= \frac{1+2z}{(1-2z)(1+z)}$$

$$= \frac{\frac{4}{3}}{1-2z} - \frac{\frac{1}{3}}{1+z}$$

$$= T_1 + T_2z + \dots + \left[\frac{4}{3}(2^{n-1}) - \frac{1}{3}(-1)^{n-1}\right]z^n + \dots$$

$$T(n) = \frac{4}{3}(2^{n-1}) - \frac{1}{3}(-1)^{n-1}$$

4. (3.26) Find the asymptotic behavior of the function T(n) defined by the recurrence relation

$$\begin{cases} T(1) = 1 \\ T(n) = T(n/2) + \sqrt{n}, & n \ge 2. \end{cases}$$

You can consider only values of n that are powers of 2.

We first observe that since $T(n) = T(n/2) + \sqrt{n}$ when $n \ge 2$, and for some $k \in \mathbb{N}$, we have

$$T(2) = T(1) + \sqrt{2}$$
...
 $T(2^{k-1}) = T(2^{k-2}) + \sqrt{2^{k-1}}$
 $T(2^k) = T(2^{k-1}) + \sqrt{2^k}$
...

, that is, when $n = 2^k$,

$$T(n) = T(1) + \sqrt{2} + \cdots + \sqrt{2^{k-1}} + \sqrt{2^k}.$$

(Cont.)

$$T(n) = T(1) + \sqrt{2} + \dots + \sqrt{2^{k-1}} + \sqrt{2^k}$$

$$= 1 + \sqrt{\frac{2^k}{2^{k-1}}} + \dots + \sqrt{\frac{2^k}{2^1}} + \sqrt{\frac{2^k}{2^0}}$$

$$= 1 + \sqrt{\frac{n}{2^{k-1}}} + \dots + \sqrt{\frac{n}{2^1}} + \sqrt{\frac{n}{2^0}}$$

$$= 1 + \sqrt{n} \cdot (1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{2^{k-1}}})$$

$$\leq 1 + \sqrt{n} \cdot (1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{2^{k-1}}} + \dots).$$

By the generating function:

$$\frac{1}{1-z}=1+z+z^2+\cdots$$

, we have

$$T(n) \leq 1 + \sqrt{n} \cdot \frac{1}{1 - \frac{1}{\sqrt{2}}}.$$

Note that the constant 1 and $\frac{1}{1-\frac{1}{\sqrt{2}}}$ are not relevant in asymptotic notation, thus, the asymptotic behavior of T(n) is $O(\sqrt{n})$.

5. (3.30) Use Equation 1, shown below, to prove that $S(n) = \sum_{i=1}^{n} \lceil \log_2(n/i) \rceil$ satisfies S(n) = O(n).

Bounding a summation by an integral

If f(x) is a monotonically increasing continuous function, then

$$\sum_{i=1}^{n} f(i) \le \int_{x=1}^{x=n+1} f(x) dx. \tag{1}$$

$$S(n) = \sum_{i=1}^n \lceil \log_2(\frac{n}{i}) \rceil \le \sum_{i=1}^n (\log_2(\frac{n}{i}) + 1) = \sum_{i=1}^n \log_2(\frac{n}{i}) + n$$

Let
$$f(x) = \log_2(\frac{n}{n-x+1}) \Rightarrow \sum_{x=1}^n f(x) \le \int_1^{n+1} f(x) dx$$

Now, we calculate $\int_1^{n+1} f(x) dx$ to assess our S(n):

$$\int_{1}^{n+1} f(x) dx = \int_{1}^{n+1} \log_{2}(n) - \log_{2}(n-x+1) dx$$

$$= n \log_{2} n - \int_{1}^{n+1} \log_{2}(n-x+1) dx$$
{Substitute $n-x+1$ by u }
$$= n \log_{2} n - \frac{1}{\ln 2} [-(u) \ln(u) + (u)] \Big|_{n}^{0}$$

Yu Hsiao Yu-Hsuan Wu Homework 3 Algorithms 2024 19/20

$$\int_{1}^{n+1} f(x) dx = n \log_{2} n - \frac{1}{\ln 2} (n \ln(n) - n)$$

$$= n \log_{2} n - n \log_{2} n + \frac{n}{\ln 2}$$

$$= \frac{n}{\ln 2}$$

Therefore,

$$S(n) \le \sum_{i=1}^{n} \log_2(\frac{n}{i}) + n$$
$$\le \frac{n}{\ln 2} + n$$

$$\Rightarrow S(n) = O(n)$$