Homework 9

Yu Hsiao Yu-Hsuan Wu

=] & = E DAl
Yu Hsiao Yu-Hsuan Wu Homework 9

Question 1

1. (7.16 modified)

(a) Run the strongly connected components algorithm (the original version) on the
directed graph shown in Figure 1. When traversing the graph, the algorithm
should follow the given DFS numbers (from 9 down to 1). Show the High
values as computed by the algorithm in each step.

(b) Add the edge (4,7) to the graph and discuss the changes this makes to the
execution of the algorithm.

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 2/24

Question 1 (a)

Change the DFS numbers to the corresponding alphabetical order to
avoid confusion.

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 3/24

Question 1 (a)

f g h

e
9 87 6 5 43 21

Vertex
DFS__Number

o~

[celee]

9 8 7 6
9 8 7 6
9 8 7 6 5

D OO

LN OK

9 8 7 6 5 4
9 8 7 6 5 4
9 8 7 6 5 4

9 8 7 6 5 4

* OO -2

9 8 7 6 5 4 3
9 8 7 6 5 4 3 8

9 8 7 6 5 4 8 8

9 8 76 5 4 8 8 9
9 8 7 6 5 49 89
9 9765 49 89
9 976 5 49 89

g
b
@

[Component_Num 5 5 4 1 3 2 5 5 5]

4/24

Algorithms 2024

Homework 9

Yu Hsiao Yu-Hsuan Wu

Question 1 (b)

Add the edge (4, 7) (=(f,c)) to the graph and discuss the changes.

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 5/24

Question 1 (b)

-

<= N

c
9 8 7 6 5

Vertex
DFS__Number

)
©
o~~~
| 00 00 0

o

[e) I e e}

9 8 7 6 7 7 3
9 8 76 7 7 3 8

b0 <

9 8 76 7 7 8 8

9 8 7 6 778 8 9
9 8 7 6 77 9 89
9 976 77 9 89
9 97 6 77 9 89

g
b
@

‘Component_Num 33212 233 3‘

6/24

Algorithms 2024

Homework 9

Yu Hsiao Yu-Hsuan Wu

Question 2

2. Consider the algorithm discussed in class for determining the strongly connected
components of a directed graph. Is the algorithm still correct if we replace the line
“v.high := max(v.high, w.DFS_Number)” by “v.high := max(v.high,w.high)”?
Why? Please explain.

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 7/24

Question 2

procedure SCC(v)

for all edges (v, w) do
if w.DFS_Number = 0 then
SCC(w);
v.High := max(v.High, w.High);
else if w.DFS_Number > v.DFS__Number and w.Component = 0 then
v.High := max(v.High, w.high);
end if
end for

end procedure

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 8/24

Question 2

The algorithm is still correct.

Since w.high > w.DFS_Number by the design of the algorithm

naturally (i.e., case w.high < w.DFS_Number won't occur), we can
now consider two cases:

Q If w.high = w.DFS_Number, then the algorithm is the same as
the original version.

© The else if statement being true indicates v and w must belong
to the same SCC. Thus, when w.high > w.DFS_Number, we
know that w belongs to SCC of a higher leader. Therefore,
assigning w.high to v.high will also be correct.

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 9/24

Question 3

3. We have discussed in class the idea of using DFS to find an augmenting path (if one
exists) in a network with some given flow. Please present the algorithm in suitable
pseudocode.

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 10/24

Question 3

4/3
3/3
7/7
S ®
1/1 43 6/3

5/5

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 11/24

Question 3

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 12/24

Question 3

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 13 /24

Question 3

Algorithm AugmentingPathDFS(G(V, E), v)
begin
mark v;
Temp_S.push(v);
if v=tthen
ResultS := TempS;
found = true;
end if
for each edge (v, w) € E do
if found then
break;
end if
if (v,w) < (v, w) or {w,v) > 0) and w is unmarked then
AugmentingPathDFS(G, w);
end if
end for
Temp_S.pop();
end
end Algorithm

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 14 /24

Question 3

Algorithm AugmentingPath(G(V, E), s, t)
begin
Temp_S, Result_S := empty stack;
found := false;
AugmentingPathDFS(G, s);
if found then
ResultPath_S := empty stack;
post_v := Result_S.pop();
while Result_S # empty do
current_v := Result_S.pop();
ResultPath_S.push(edge(current_v, post_v));
post__v := current_v,

end while
else

print “Augmenting path does not exist.”;
end if

end
end Algorithm

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 15/24

Question 4

4. Consider designing by dynamic programming an algorithm that, given as input a
sequence of distinct numbers, determines the length of a longest increasing subse-
quence in the input sequence. For instance, if the input sequenceis 1, 3,11,5,12,14,7,
9, 15, then a longest increasing subsequence is 1,3,5,7,9, 15 whose length is 6 (an-
other longest increasing subsequence is 1, 3,11, 12,14, 15).

(a) Formulate the solution using recurrence relations.

(b) Present the algorithm in adequate pseudocode, based on the previous recursive
formulation. What is the time complexity of your algorithm?

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 16 /24

Question 4 (a)
Suppose we have a sequence S with length n. We first consider the
length of the longest increasing subsequence of S ending with S[n].
We have three cases:
@ n = 1: The longest increasing subsequence length is obviously 1.
e n>1:
» all the previous elements are larger than S[n]: the longest
increasing subsequence length is 1.
» otherwise: the length would be 1 plus the maximum value of all
the possible prefixes with its last element less than s,.

Thus, for any i such that 1 < i< n, we have

1 if =1,
L(i) = 1 if S[1] < S, Vi1 <j<i
1+ maxe(L() otherwise, where
/e J={jl1<j<inS[]> S}

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 17 /24

Question 4 (a)

The length of the longest increasing subsequence in S, denoted
LIS(S), is the maximum value in L(S') for all prefix sequences S
of S.

That iS, L/S(S) = maxlgign(L(i)).

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 18/24

Question 4 (b)

Algorithm LIS(S)
begin
n:= len(S), max:=1;
initialize L[1..n] with 1,
for i:=2to ndo
for j;=1toi—1do
if S[i] > S[j] and L[)] + 1 > L[i] then
L[]=L[]+1,
end if
end for
if L[] > max then
max := L[]
end if
end for
return max;
end
end Algorithm

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 19/24

Time Complexity: O(n?).

Question 5

5. The cost of finding a key value in a binary search tree is linearly proportional to
the depth/level of the node where the key value is stored, with the root considered
to be at level 0. Obviously, for a key value that is known to be looked up more
frequently, it is better stored in a node at a smaller level.

Consider designing by dynamic programming an algorithm that, given the look-up
frequencies of n key values, constructs an optimal binary search tree that will incur
the least total cost for performing all the look-ups.

(a) Formulate the solution using recurrence relations; let F[1..n] be the look-up
frequencies of the n key values K[1..n], which are in sorted order.

(b) Present the algorithm in suitable pseudocode, based on the previous recursive
formulation. What is the time complexity of your algorithm?

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 20/24

Question 5 (a)

Among all possible subtrees, find the one with minimal cost.

For each subtree, its cost is the sum of (1) left child, (2) right child,
and (3) the frequency of all nodes in the subtree since every level of
each point is increasing by 1 due to the new added root.

Let OPTcost(i, j) be the minimal cost of the subtree containing items
from i to j.

Making each node as root r, try to find the one which can provide
the minimal cost.

OPTcost(i,j) =
0 ifi>j
FIi] _ ifi=j
min;<,<; {optcost(i,r— 1) + optcost(r+ 1,j) + > _; FIK|} otherwise

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 21/24

Question 5 (b)

function CoNSTRUCTOPTIMALBST(K, F, n)
// initialization
initialize cost[1..n][1..n] with oo;
initialize root[1..n|[1..n] with O;
for i=1to ndo
costli][1] := Fi]
root[i|[]] := i
end for
for L=2to ndo
fori=1ton—(L—-1)do
ji=i+L-1)
freqSum := FreqSum(F, i,j) // calculate > _; F[K]

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 22/24

Question 5 (b)

for r=1ito jdo
c:= freqSum

if r> ithen

¢:= c+ costli][r— 1]
end if
if r <jthen

¢ = c+ cost[r+ 1][]]
end if

if ¢ < cost[/][j] then
cost[il[j] := ¢
root[i|[j] :==r
end if
end for
end for
end for
return cost[1][n] , BuildTree(K, root, 1, n)

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 23/24

Question 5 (b)

function FREQSUM(F, i,))
freq_sum:=0
for k = itoj do
freq_sum := freq_sum + F[K|
end for
return freq_sum
end function=0

function BUILDTREE(K, R, i, j)
if i > jthen
return null;
end if
root := K[R[][]]]
root.left := BuildTree(K, R, i, R[]][j] — 1)
root.right := BuildTree(K, R, R[] + 1,J)
return root
end function

Time complexity: O(n?).

Yu Hsiao Yu-Hsuan Wu Homework 9 Algorithms 2024 24 /24

