Basic Number Theory and Finite Fields

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Divisibility and Division

We say a nonzero integer b divides another integer a, denoted as $b \mid a$, if $a=m b$ for some integer m.

- When an integer a is divided by a positive integer n, we get a unique integer quotient q and a unique integer remainder r such that

$$
a=q n+r \quad 0 \leq r<n, q=\lfloor a / n\rfloor .
$$

The remainder r is also referred to as a residue.

Quotient and Remainder

Source: Figure 4.1, Stallings 2014

Essence of the Euclidean Algorithm

Given two integers a and b such that $a \geq b>0$.Let $a=q b+r$, where $0 \leq r<b$.

- There are two cases:
iv If $r=0$, then we know immediately $\operatorname{gcd}(a, b)=b$ and stop.
If $r \neq 0$, repeat the steps above with b as a and r as b.
- In both cases, the equality $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$ holds.

We prove the equality by showing that $\operatorname{gcd}(b, r) \leq \operatorname{gcd}(a, b)$ and $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(b, r)$.

Essence of the Euclidean Algorithm (cont.)

We first show that $\operatorname{gcd}(b, r) \leq \operatorname{gcd}(a, b)$.
Consider $a=q b+r$.
Since $\operatorname{gcd}(b, r) \mid b$ and $\operatorname{gcd}(b, r) \mid r$, we have $\operatorname{gcd}(b, r) \mid a$.
Both $\operatorname{gcd}(b, r) \mid a$ and $\operatorname{gcd}(b, r) \mid b ;$ so, $\operatorname{gcd}(b, r) \leq \operatorname{gcd}(a, b)$.
We next show that $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(b, r)$.
Consider $r=a-q b$.
, Since $\operatorname{gcd}(a, b) \mid a$, and $\operatorname{gcd}(a, b) \mid b$, we have $\operatorname{gcd}(a, b) \mid r$.
Both $\operatorname{gcd}(a, b) \mid b$ and $\operatorname{gcd}(a, b) \mid r$; so, $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(b, r)$.

Modular Arithmetic

The remainder r from dividing a by $n(>0)$ is usually denoted by "a mod n ".

$$
a=q n+(a \bmod n) \quad q=\lfloor a / n\rfloor .
$$

$$
11 \bmod 7=4(\text { because } 11=1 \times 7+4) .
$$

$$
-11 \bmod 7=3 \text { (because }-11=-2 \times 7+3) .
$$

Congruence Modulo N

Two integers a and b are congruent modulo $n(n>0)$, denoted as $a \equiv b(\bmod n)$, if $a \bmod n=b \bmod n$.

- The positive integer n is called the modulus of the congruence relation.
- If $a \equiv 0(\bmod n)$, then $n \mid a ;$ and vice versa.
- If $a \equiv b(\bmod n)$, then $n \mid(a-b)$; and vice versa.

Modular Arithmetic Operations

Properties:

$$
\begin{aligned}
& ((a \bmod n)+(b \bmod n)) \bmod n=(a+b) \bmod n \\
& ((a \bmod n)-(b \bmod n)) \bmod n=(a-b) \bmod n \\
& ((a \bmod n) \times(b \bmod n)) \bmod n=(a \times b) \bmod n
\end{aligned}
$$

Applications:

```
        117}(\operatorname{mod}13
\equiv(11\times1\mp@subsup{1}{}{2}\times1\mp@subsup{1}{}{4})}((\operatorname{mod}13
\equiv(11 (mod 13)) > (1\mp@subsup{1}{}{2}}((\operatorname{mod}13))\times(1\mp@subsup{1}{}{4}(\operatorname{mod}13)
\equiv(11 (mod 13)) > (4 (mod 13)) > (3 (mod 13))
\equiv(11\times4\times3) (mod 13)
\equiv2(mod 13)
```


Arithmetic Modulo 8

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Source: Table 4.2, Stallings 2014

Arithmetic Modulo 8 (cont.)

\times	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Source: Table 4.2, Stallings 2014

Arithmetic Modulo 8 (cont.)

w	$-w$	w^{-1}
0	0	-
1	7	1
2	6	-
3	5	3
4	4	-
5	3	5
6	2	-
7	1	7

Residue Classes

Let Z_{n} denote the set of nonnegative integers less than n :

$$
Z_{n}=\{0,1,2, \cdots,(n-1)\} .
$$

This is referred to as the set of residues, or residue classes, modulo n.
Each integer r in Z_{n} represents a residue class $[r]$, where

$$
[r]=\{a: a \text { is an integer, } a \equiv r \quad(\bmod n)\} .
$$

For example, if the modulus is 4 , then

$$
[1]=\{\cdots,-7,-3,1,5,9,13, \cdots\} .
$$

Principles of Modular Arithmetic

If $(a+b) \equiv(a+c)(\bmod n)$, then $b \equiv c(\bmod n)$.
If $(a \times b) \equiv(a \times c)(\bmod n)$, then $b \equiv c(\bmod n)$, only when a is relatively prime to n.

Z_{8}	0	1	2	3	4	5	6	7
Multiplied by 6	0	6	12	18	24	30	36	42
Residues	0	6	4	2	0	6	4	2

$(6 \times 3) \equiv(6 \times 7)(\bmod 8)$, but $3 \not \equiv 7(\bmod 8)$.

$$
\begin{array}{l|cccccccc}
Z_{8} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\text { Multiplied by } 5 & 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 \\
\text { Residues } & 0 & 5 & 2 & 7 & 4 & 1 & 6 & 3
\end{array}
$$

Modular Arithmetic in Z_{n}

Property	Expression
Commutative Laws	$(w+x) \bmod n=(x+w) \bmod n$ $(w \times x) \bmod n=(x \times w) \bmod n$
Associative Laws	$[(w+x)+y] \bmod n=[w+(x+y)] \bmod n$ $[(w \times x) \times y] \bmod n=[w \times(x \times y)] \bmod n$
Distributive Law	$[w \times(x+y)] \bmod n=[(w \times x)+(w \times y)] \bmod n$
Identities	$\begin{aligned} & (0+w) \bmod n=w \bmod n \\ & (1 \times w) \bmod n=w \bmod n \end{aligned}$
Additive Inverse ($-w$)	For each $w \in Z_{n}$, there exists a z such that $w+z \equiv 0 \bmod n$

Source: Table 4.3, Stallings 2014

Finding the Multiplicative Inverse

EXTENDED EUCLID (a, b) :

1. $\left(X_{1}, Y_{1}, R_{1}\right) \leftarrow(1,0, a) ;\left(X_{2}, Y_{2}, R_{2}\right) \leftarrow(0,1, b)$
2. if $R_{2}=0$ then return $R_{1}=\operatorname{gcd}(a, b)$; no inverse
3. if $R_{2}=1$ then return $R_{2}=\operatorname{gcd}(a, b) ; Y_{2}=b^{-1}(\bmod a)$
4. $Q=\left\lfloor R_{1} / R_{2}\right\rfloor$
5. $(X, Y, R) \leftarrow\left(X_{1}-Q X_{2}, Y_{1}-Q Y_{2}, R_{1}-Q R_{2}\right)$
6. $\left(X_{1}, Y_{1}, R_{1}\right) \leftarrow\left(X_{2}, Y_{2}, R_{2}\right)$
7. $\left(X_{2}, Y_{2}, R_{2}\right) \leftarrow(X, Y, R)$
8. goto 2

Invariants: $a X_{1}+b Y_{1}=R_{1}$ and $a X_{2}+b Y_{2}=R_{2}$.
If $\operatorname{gcd}(a, b)=1$, then Y_{2} equals the multiplicative inverse of b modulo a when the algorithm terminates.
$a X_{2}+b Y_{2}=R_{2}=1 \rightarrow b Y_{2}=1-a X_{2} \rightarrow b Y_{2} \equiv 1 \bmod a$.

Groups, Rings, and Fields

Source: Figure 4.2, Stallings 2010

Groups, Rings, and Fields (cont.)

(A1) Closure under addition:
(A2) Associativity of addition:
(A3) Additive identity:
(A4) Additive inverse:
(A5) Commutativity of addition:
(M1) Closure under multiplication:
(M2) Associativity of multiplication:
(M3) Distributive laws:
(M4) Commutativity of multiplication:
(M5) Multiplicative identity:
(M6) No zero divisors:
(M7) Multiplicative inverse:

If a and b belong to S, then $a+b$ is also in S $a+(b+c)=(a+b)+c$ for all a, b, c in S
There is an element 0 in R such that $a+0=0+a=a$ for all a in S
For each a in S there is an element $-a$ in S
such that $a+(-a)=(-a)+a=0$
$a+b=b+a$ for all a, b in S
If a and b belong to S, then $a b$ is also in S
$a(b c)=(a b) c$ for all a, b, c in S
$a(b+c)=a b+a c$ for all a, b, c in S
$(a+b) c=a c+b c$ for all a, b, c in S
$a b=b a$ for all a, b in S
There is an element 1 in S such that
$a 1=1 a=a$ for all a in S
If a, b in S and $a b=0$, then either
$a=0$ or $b=0$
If a belongs to S and $a \neq 0$, there is an element a^{-1} in S such that $a a^{-1}=a^{-1} a=1$

Cyclic Groups

Let a^{n} denote $a \cdot a \cdots \cdots$ with $n(\geq 0)$ occurrences of a. Formally,

$$
a^{n}= \begin{cases}e & \text { if } n=0 \\ a \cdot a^{n-1} & \text { if } n>0\end{cases}
$$

A group G is cyclic if, for every b in $G, b=a^{n}$ for a fixed a in G and some integer $n \geq 0$.
The fixed element a is said to generate G and is called the generator of G.

Consider $Z_{p}=\{0,1,2, \cdots,(p-1)\}$ where p is a prime.

- For each $w \in Z_{p}, w \neq 0$, there exists a $z \in Z_{p}$ such that $w \times z \equiv 1(\bmod p)$.
The element z is called the multiplicative inverse of w.
For any prime $p,\left(Z_{p},+, \times\right)$ is a finite field of order p, denoted $G F(p)$.

Arithmetic in $G F(7)$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Source: Table 4.5, Stallings 2014

Arithmetic in $G F(7)$ (cont.)

\times	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Source: Table 4.5, Stallings 2014

Arithmetic in $G F(7)$ (cont.)

$$
w \quad-w \quad w^{-1}
$$

0	0	-
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

Source: Table 4.5, Stallings 2014

Polynomial Arithmetic

$$
\begin{aligned}
& x^{3}+x^{2}+2 \\
& +\left(x^{2}-x+1\right) \\
& \hline x^{3}+2 x^{2}-x+3
\end{aligned}
$$

(a) Addition

(c) Multiplication

$$
\begin{aligned}
& x^{3}+x^{2}+2 \\
& -\left(x^{2}-x+1\right) \\
& \hline x^{3}+x+1
\end{aligned}
$$

(b) Subtraction

$$
\begin{array}{|c|}
\hline x ^ { 2 } - x + 1 \longdiv { x ^ { 3 } + x ^ { 2 } + 2 } \\
\frac{x^{3}-x^{2}+x}{2 x^{2}-x+2} \\
\frac{2 x^{2}-2 x+2}{x}
\end{array}
$$

(d) Division

Source: Figure 4.3, Stallings 2014

Polynomial Arithmetic over $G F(2)$

(a) Addition

(b) Subtraction

Source: Figure 4.4, Stallings 2014

Polynomial Arithmetic over GF(2) (cont.)

(c) Multiplication

(d) Division

Source: Figure 4.4, Stallings 2014

Arithmetic in $G F\left(2^{3}\right)$

$\begin{array}{llllllll}000 & 001 & 010 & 011 & 100 & 101 & 110 & 111\end{array}$

	+	0	1	2	3	4	5	6	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

Source: Table 4.6, Stallings 2014

Arithmetic in $G F\left(2^{3}\right)$ (cont.)
$\begin{array}{llllllll}000 & 001 & 010 & 011 & 100 & 101 & 110 & 111\end{array}$

	\times	0	1	2	3	4	5	6	7
000	0	0	0	0	0	0	0	0	0
001	1	0	1	2	3	4	5	6	7
010	2	0	2	4	6	3	1	7	5
011	3	0	3	6	5	7	4	1	2
100	4	0	4	3	7	6	2	5	1
101	5	0	5	1	4	2	7	3	6
110	6	0	6	7	1	5	3	2	4
111	7	0	7	5	2	1	6	4	3

Source: Table 4.6, Stallings 2014

Arithmetic in $G F\left(2^{3}\right)$ (cont.)

w	$-w$	w^{-1}
0	0	-
1	1	1
2	2	5
3	3	6
4	4	7
5	5	2
6	6	3
7	7	4

Modular Polynomial Arithmetic

Let S denote the set of all polynomials of degree $n-1$ or less over the field Z_{p} with the form

$$
f(x)=a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}
$$

where each a_{i} takes on a value in Z_{p}. Arithmetic on the coefficients is performed modulo p.

- If multiplication results in a polynomial of degree greater than $n-1$, then the polynomial is reduced modulo some irreducible polynomial of degree n.
Each such S is a finite field; every nonzero element a in S has a multiplicative inverse a^{-1} such that $a \times a^{-1}=1$.
- Such an S is denoted as $\operatorname{GF}\left(2^{n}\right)$ when $p=2$.

Irreducible Polynomials

A polynomial $f(x)$ is irreducible if $f(x)$ cannot be expressed as a product of two polynomials with degrees lower than that of $f(x)$.Irreducible polynomials play a role analogous to that of primes.
The AES algorithm uses the finite field $\operatorname{GF}\left(2^{8}\right)$ with the following irreducible polynomial modulus

$$
x^{8}+x^{4}+x^{3}+x+1
$$

Polynomial Arithmetic Modulo $\left(x^{3}+x+1\right)$

	+	$\begin{gathered} 000 \\ 0 \end{gathered}$	$\begin{gathered} 001 \\ 1 \end{gathered}$	010 x	$\begin{gathered} 011 \\ x+1 \end{gathered}$	$\begin{gathered} 100 \\ x^{2} \end{gathered}$	$\begin{gathered} 101 \\ x^{2}+1 \end{gathered}$	$\begin{gathered} 110 \\ x^{2}+x \end{gathered}$	$\begin{gathered} 111 \\ x^{2}+x+1 \end{gathered}$
000	0	0	1	x	$x+1$	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$
001	1	1	0	$x+1$	x	$x^{2}+1$	x^{2}	$x^{2}+x+1$	$x^{2}+x$
010	x	x	$x+1$	0	1	$x^{2}+x$	$x^{2}+x+1$	x^{2}	$x^{2}+1$
011	$x+1$	$x+1$	x	1	0	$x^{2}+x+1$	$x^{2}+x$	$x^{2}+1$	x^{2}
100	x^{2}	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$	0	1	x	$x+1$
101	$x^{2}+1$	$x^{2}+1$	x^{2}	$x^{2}+x+1$	$x^{2}+x$	1	0	$x+1$	x
110	$x^{2}+x$	$x^{2}+x$	$x^{2}+x+1$	x^{2}	$x^{2}+1$	x	$x+1$	0	1
111	$x^{2}+x+1$	$x^{2}+x+1$	$x^{2}+x$	$x^{2}+1$	x^{2}	$x+1$	x	1	0

Source: Table 4.7, Stallings 2014

Polynomial Arithmetic Modulo $\left(x^{3}+x+1\right)(\operatorname{con}(4)$

	\times	$\begin{gathered} 000 \\ 0 \end{gathered}$	$\begin{gathered} 001 \\ 1 \end{gathered}$	010 x	$\begin{gathered} 011 \\ x+1 \end{gathered}$	$\begin{gathered} 100 \\ x^{2} \end{gathered}$	$\begin{gathered} 101 \\ x^{2}+1 \end{gathered}$	$\begin{gathered} 110 \\ x^{2}+x \end{gathered}$	$\begin{gathered} 111 \\ x^{2}+x+1 \\ \hline \end{gathered}$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	x	$x+1$	x^{2}	$x^{2}+1$	$x^{2}+x$	$x^{2}+x+1$
010	x	0	x	x^{2}	$x^{2}+x$	$x+1$	1	$x^{2}+x+1$	$x^{2}+1$
011	$x+1$	0	$x+1$	$x^{2}+x$	$x^{2}+1$	$x^{2}+x+1$	x^{2}	1	x
100	x^{2}	0	x^{2}	$x+1$	$x^{2}+x+1$	$x^{2}+x$	x	$x^{2}+1$	1
101	$x^{2}+1$	0	$x^{2}+1$	1	x^{2}	x	$x^{2}+x+1$	$x+1$	$x^{2}+x$
110	$x^{2}+x$	0	$x^{2}+x$	$x^{2}+x+1$	1	$x^{2}+1$	$x+1$	x	x^{2}
111	$x^{2}+x+1$	0	$x^{2}+x+1$	$x^{2}+1$	x	1	$x^{2}+x$	x^{2}	$x+1$

Source: Table 4.7, Stallings 2014

Extended Euclid's Algorithm for GF $\left(p^{n}\right)$

```
EXTENDED EUCLID \((a(x), b(x))\) :
1. \(\quad\left[V_{1}(x), W_{1}(x), R_{1}(x)\right] \leftarrow[1,0, a(x)] ;\left[V_{2}(x), W_{2}(x), R_{2}(x)\right] \leftarrow[0,1, b(x)]\)
2. if \(R_{2}(x)=0\) then return \(R_{1}(x)=\operatorname{gcd}(a(x), b(x))\); no inverse
3. if \(R_{2}(x)=1\) then return \(R_{2}(x)=\operatorname{gcd}(a(x), b(x)) ; W_{2}(x)=b^{-1}(x)(\bmod a(x))\)
4. \(\quad Q(x)=\) the quotient of \(R_{1}(x) / R_{2}(x)\)
5. \(\quad[V(x), W(x), R(x)]\)
\(\leftarrow\left[V_{1}(x)-Q(x) V_{2}(x), W_{1}(x)-Q(x) W_{2}(x), R_{1}(x)-Q(x) R_{2}(x)\right]\)
\(\left[V_{1}(x), W_{1}(x), R_{1}(x)\right] \leftarrow\left[V_{2}(x), W_{2}(x), R_{2}(x)\right]\)
\(\left[V_{2}(x), W_{2}(x), R_{2}(x)\right] \leftarrow[V(x), W(x), R(x)]\)
goto 2
```

Invariants: $a(x) V_{1}(x)+b(x) W_{1}(x)=R_{1}(x)$ and $a(x) V_{2}(x)+b(x) W_{2}(x)=R_{2}(x)$.
If $\operatorname{gcd}(a(x), b(x))=1$, then $W_{2}(x)$ equals the multiplicative inverse of $b(x)$ modulo $a(x)$ when the algorithm terminates.

A Run of Extended Euclid

The following run finds the multiplicative inverse of $x^{7}+x+1$ in $\mathrm{GF}\left(2^{8}\right)$ with $x^{8}+x^{4}+x^{3}+x+1$ as the irreducible polynomial modulus; the result is x^{7}.

Initialization	$\mathrm{a}(x)=x^{8}+x^{4}+x^{3}+x+1 ; v_{-1}(x)=1 ; w_{-1}(x)=0$ $b(x)=x^{7}+x+1 ; v_{0}(x)=0 ; w_{0}(x)=1$
Iteration 1	$q_{1}(x)=x ; r_{1}(x)=x^{4}+x^{3}+x^{2}+1$ $v_{1}(x)=1 ; w_{1}(x)=x$
Iteration 2	$q_{2}(x)=x^{3}+x^{2}+1 ; r_{2}(x)=x$ $v_{2}(x)=x^{3}+x^{2}+1 ; w_{2}(x)=x^{4}+x^{3}+x+1$
Iteration 3	$q_{3}(x)=x^{3}+x^{2}+x ; r_{3}(x)=1$ $v_{3}(x)=x^{6}+x^{2}+x+1 ; w_{3}(x)=x^{7}$
Iteration 4	$q_{4}(x)=\mathrm{x} ; r_{4}(x)=0$ $v_{4}(x)=x^{7}+x+1 ; w_{4}(x)=x^{8}+x^{4}+x^{3}+x+1$
Result	$d(x)=r_{3}(x)=\operatorname{gcd}(a(x), b(x))=1$ $\mathrm{w}(x)=w_{3}(x)=\left(x^{7}+x+1\right)^{-1} \bmod \left(x^{8}+x^{4}+x^{3}+x+1\right)=x^{7}$

Source: Table 4.8, Stallings 2014

Bytes and Polynomials in GF $\left(2^{8}\right)$

In the AES algorithm, the basic unit for processing is a byte. A byte $b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$ is interpreted as an element of the finite field $\mathrm{GF}\left(2^{8}\right)$ using the polynomial representation:

$$
b_{7} x^{7}+b_{6} x^{6}+b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}=\sum_{i=0}^{7} b_{i} x^{i}
$$

For example, 01100011 identifies $x^{6}+x^{5}+x+1$.

Addition in GF $\left(2^{8}\right)$

- The addition of two polynomials in the finite field $\operatorname{GF}\left(2^{8}\right)$ is achieved by adding (modulo 2) the coefficients of the corresponding powers.
polnomial representation:
$\left(x^{6}+x^{4}+x^{2}+x+1\right)+\left(x^{7}+x+1\right)=x^{7}+x^{6}+x^{4}+x^{2}$
binary representation:
$01010111 \oplus 10000011$
$=11010100$
hexadecimal representation:
$\{57\} \oplus\{83\}$

$$
=\{D 4\}
$$

Multiplication in GF $\left(2^{8}\right)$

Let $f(x)$ be $b_{7} x^{7}+b_{6} x^{6}+b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$.
Multiply $f(x)$ by x, we have

$$
\begin{aligned}
& f(x) \times x \\
= & b_{7} x^{8}+b_{6} x^{7}+b_{5} x^{6}+b_{4} x^{5}+b_{3} x^{4}+b_{2} x^{3}+b_{1} x^{2}+b_{0} x \\
& \bmod m(x)
\end{aligned}
$$

Again, for the AES algorithm,

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1
$$

When $b_{7}=0$, the result is already in the reduced form.

Multiplication in $\operatorname{GF}\left(2^{8}\right)$ (cont.)

When $b_{7}=1$:

$$
\begin{array}{rlr}
& f(x) \times x & \\
= & \left(x^{7}+b_{6} x^{6}+b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}\right) \times x & \bmod m(x) \\
= & x^{8}+b_{6} x^{7}+b_{5} x^{6}+b_{4} x^{5}+b_{3} x^{4}+b_{2} x^{3}+b_{1} x^{2}+b_{0} x & \bmod m(x) \\
= & \left(b_{6} x^{7}+b_{5} x^{6}+b_{4} x^{5}+b_{3} x^{4}+b_{2} x^{3}+b_{1} x^{2}+b_{0} x\right)+ & \\
& \left(x^{4}+x^{3}+x+1\right) & \bmod m(x)
\end{array}
$$

Note: $x^{8} \bmod m(x)=m(x)-x^{8}=x^{4}+x^{3}+x+1$.

- To summarize in binary representation,

$$
f(x) \times x= \begin{cases}\left(b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0} 0\right) & \text { if } b_{7}=0 \\ \left(b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0} 0\right) \oplus(00011011) & \text { if } b_{7}=1\end{cases}
$$

Repeat the above to get multiplications by x^{2}, x^{3}, etc.

Generators for Finite Fields

A generator for $\operatorname{GF}\left(2^{3}\right)$ using $f(x)=x^{3}+x+1$ (irreducible):

Power Representation	Polynomial Representation	Binary Representation	Decimal (Hex) Representation
0	0	000	0
$g^{0}\left(=g^{7}\right)$	1	001	1
g^{1}	g	010	2
g^{2}	g^{2}	100	4
g^{3}	$g+1$	011	3
g^{4}	$g^{2}+g$	110	6
g^{5}	$g^{2}+g+1$	111	7
g^{6}	$g^{2}+1$	101	5

Source: Table 4.9, Stallings 2014
Note: $f(g)=g^{3}+g+1=0, g^{3}=-g-1=g+1$,
$g^{4}=g\left(g^{3}\right)=g(g+1)=g^{2}+g$, etc.

GF $\left(2^{3}\right)$ Arithmetic Using a Generator

	+	$\begin{gathered} 000 \\ 0 \end{gathered}$	$\begin{gathered} 001 \\ 1 \end{gathered}$	010 G	$\begin{gathered} 100 \\ g^{2} \end{gathered}$	$\begin{gathered} 011 \\ g^{3} \end{gathered}$	$\begin{gathered} 110 \\ g^{4} \end{gathered}$	$\begin{gathered} 111 \\ g^{5} \end{gathered}$	$\begin{gathered} 101 \\ g^{6} \end{gathered}$
000	0	0	1	G	g^{2}	$g+1$	$g^{2}+g$	$g^{2}+g+1$	$g^{2}+1$
001	1	1	0	$g+1$	$g^{2}+1$	g	$g^{2}+g+1$	$g^{2}+g$	g^{2}
010	g	g	$g+1$	0	$g^{2}+g$	1	g^{2}	$g^{2}+1$	$g^{2}+g+1$
100	g^{2}	g^{2}	$g^{2}+1$	$g^{2}+g$	0	$g^{2}+g+1$	g	$g+1$	1
011	g^{3}	$g+1$	g	1	$g^{2}+g+1$	0	$g^{2}+1$	g^{2}	$g^{2}+g$
110	g^{4}	$g^{2}+g$	$g^{2}+g+1$	g^{2}	g	$g^{2}+1$	0	1	$g+1$
111	g^{5}	$g^{2}+g+1$	$g^{2}+g$	$g^{2}+1$	$g+1$	g^{2}	1	0	g
101	g^{6}	$g^{2}+1$	g^{2}	$g^{2}+g+1$	1	$g^{2}+g$	$g+1$	g	0

Source: Table 4.10, Stallings 2014

GF $\left(2^{3}\right)$ Arithmetic Using a Generator (cont.)

